Distributed Hybrid Gradient Algorithm with Application to Cooperative Adaptive Estimation

M. Maghenem, Adnane Saoud, A. Loría
{"title":"Distributed Hybrid Gradient Algorithm with Application to Cooperative Adaptive Estimation","authors":"M. Maghenem, Adnane Saoud, A. Loría","doi":"10.1145/3501710.3519528","DOIUrl":null,"url":null,"abstract":"We address a classical identification problem that consists in estimating a vector of constant unknown parameters from a given linear input/output relationship. The proposed method relies on a network of gradient-descent-based estimators, each of which exploits only a portion of the input-output data. A key feature of the method is that the input-output signals are hybrid, so they may evolve in continuous time (i.e., they may flow), or they may change at isolated time instances (i.e., they may jump). The estimators are interconnected over a weakly-connected directed graph, so the alternation of flows and jumps combined with the distributed character of the algorithm introduce a rich behavior that is impossible to obtain using continuous- or discrete-time estimators. A condition of persistence of excitation in hybrid form ensures exponential convergence of the estimation errors. The proposed approach generalizes the existing centralized gradient-descent algorithms and yields relaxed sufficient conditions for (uniform-exponential) parameter estimation. In addition, we address the observation/identification problem for a class of hybrid systems with unknown parameters using a distributed network of adaptive observers/identifiers.","PeriodicalId":194680,"journal":{"name":"Proceedings of the 25th ACM International Conference on Hybrid Systems: Computation and Control","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 25th ACM International Conference on Hybrid Systems: Computation and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3501710.3519528","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We address a classical identification problem that consists in estimating a vector of constant unknown parameters from a given linear input/output relationship. The proposed method relies on a network of gradient-descent-based estimators, each of which exploits only a portion of the input-output data. A key feature of the method is that the input-output signals are hybrid, so they may evolve in continuous time (i.e., they may flow), or they may change at isolated time instances (i.e., they may jump). The estimators are interconnected over a weakly-connected directed graph, so the alternation of flows and jumps combined with the distributed character of the algorithm introduce a rich behavior that is impossible to obtain using continuous- or discrete-time estimators. A condition of persistence of excitation in hybrid form ensures exponential convergence of the estimation errors. The proposed approach generalizes the existing centralized gradient-descent algorithms and yields relaxed sufficient conditions for (uniform-exponential) parameter estimation. In addition, we address the observation/identification problem for a class of hybrid systems with unknown parameters using a distributed network of adaptive observers/identifiers.
分布式混合梯度算法及其在协同自适应估计中的应用
我们解决了一个经典的辨识问题,该问题包括从给定的线性输入/输出关系中估计一个常数未知参数的向量。所提出的方法依赖于一个基于梯度下降的估计器网络,每个估计器只利用一部分输入输出数据。该方法的一个关键特征是输入输出信号是混合的,因此它们可能在连续时间内演变(即,它们可能流动),或者它们可能在孤立的时间实例中变化(即,它们可能跳跃)。估计量在一个弱连接有向图上相互连接,因此流和跳的交替结合算法的分布特性引入了丰富的行为,这是使用连续或离散时间估计量无法获得的。混合形式的激励持续条件保证了估计误差的指数收敛。该方法推广了现有的集中式梯度下降算法,并给出了松弛的等指数参数估计的充分条件。此外,我们使用自适应观测器/标识符的分布式网络解决了一类具有未知参数的混合系统的观察/识别问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信