Zero-sum differential games on the Wasserstein space

T. Başar, Jun Moon
{"title":"Zero-sum differential games on the Wasserstein space","authors":"T. Başar, Jun Moon","doi":"10.4310/CIS.2021.V21.N2.A3","DOIUrl":null,"url":null,"abstract":"We consider two-player zero-sum differential games (ZSDGs), where the state process (dynamical system) depends on the random initial condition and the state process's distribution, and the objective functional includes the state process's distribution and the random target variable. Unlike ZSDGs studied in the existing literature, the ZSDG of this paper introduces a new technical challenge, since the corresponding (lower and upper) value functions are defined on $\\mathcal{P}_2$ (the set of probability measures with finite second moments) or $\\mathcal{L}_2$ (the set of random variables with finite second moments), both of which are infinite-dimensional spaces. We show that the (lower and upper) value functions on $\\mathcal{P}_2$ and $\\mathcal{L}_2$ are equivalent (law invariant) and continuous, satisfying dynamic programming principles. We use the notion of derivative of a function of probability measures in $\\mathcal{P}_2$ and its lifted version in $\\mathcal{L}_2$ to show that the (lower and upper) value functions are unique viscosity solutions to the associated (lower and upper) Hamilton-Jacobi-Isaacs equations that are (infinite-dimensional) first-order PDEs on $\\mathcal{P}_2$ and $\\mathcal{L}_2$, where the uniqueness is obtained via the comparison principle. Under the Isaacs condition, we show that the ZSDG has a value.","PeriodicalId":185710,"journal":{"name":"Commun. Inf. Syst.","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Commun. Inf. Syst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4310/CIS.2021.V21.N2.A3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

We consider two-player zero-sum differential games (ZSDGs), where the state process (dynamical system) depends on the random initial condition and the state process's distribution, and the objective functional includes the state process's distribution and the random target variable. Unlike ZSDGs studied in the existing literature, the ZSDG of this paper introduces a new technical challenge, since the corresponding (lower and upper) value functions are defined on $\mathcal{P}_2$ (the set of probability measures with finite second moments) or $\mathcal{L}_2$ (the set of random variables with finite second moments), both of which are infinite-dimensional spaces. We show that the (lower and upper) value functions on $\mathcal{P}_2$ and $\mathcal{L}_2$ are equivalent (law invariant) and continuous, satisfying dynamic programming principles. We use the notion of derivative of a function of probability measures in $\mathcal{P}_2$ and its lifted version in $\mathcal{L}_2$ to show that the (lower and upper) value functions are unique viscosity solutions to the associated (lower and upper) Hamilton-Jacobi-Isaacs equations that are (infinite-dimensional) first-order PDEs on $\mathcal{P}_2$ and $\mathcal{L}_2$, where the uniqueness is obtained via the comparison principle. Under the Isaacs condition, we show that the ZSDG has a value.
Wasserstein空间上的零和微分博弈
考虑两人零和微分博弈(zsdg),其中状态过程(动力系统)取决于随机初始条件和状态过程的分布,目标函数包括状态过程的分布和随机目标变量。与现有文献研究的ZSDG不同,本文的ZSDG引入了一个新的技术挑战,因为相应的(上下)值函数定义在$\mathcal{P}_2$(有限秒矩的概率测度集)或$\mathcal{L}_2$(有限秒矩的随机变量集)上,两者都是无限维空间。证明了$\mathcal{P}_2$和$\mathcal{L}_2$上的(下)值函数是等价的(律不变的)和连续的,满足动态规划原则。我们利用$\mathcal{P}_2$中概率测度函数的导数的概念及其在$\mathcal{L}_2$中的提升版本,证明了$\mathcal{P}_2$和$\mathcal{L}_2$上无限维一阶偏微分方程(上下)的值函数是相关的(上下)Hamilton-Jacobi-Isaacs方程的唯一粘性解,其中唯一性是通过比较原理得到的。在Isaacs条件下,我们证明了ZSDG有一个值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信