A study of Nesterov's scheme for Lagrangian decomposition and MAP labeling

Bogdan Savchynskyy, Jörg H. Kappes, S. Schmidt, C. Schnörr
{"title":"A study of Nesterov's scheme for Lagrangian decomposition and MAP labeling","authors":"Bogdan Savchynskyy, Jörg H. Kappes, S. Schmidt, C. Schnörr","doi":"10.1109/CVPR.2011.5995652","DOIUrl":null,"url":null,"abstract":"We study the MAP-labeling problem for graphical models by optimizing a dual problem obtained by Lagrangian decomposition. In this paper, we focus specifically on Nes-terov's optimal first-order optimization scheme for non-smooth convex programs, that has been studied for a range of other problems in computer vision and machine learning in recent years. We show that in order to obtain an efficiently convergent iteration, this approach should be augmented with a dynamic estimation of a corresponding Lip-schitz constant, leading to a runtime complexity of O(1/∊) in terms of the desired precision ∊. Additionally, we devise a stopping criterion based on a duality gap as a sound basis for competitive comparison and show how to compute it efficiently. We evaluate our results using the publicly available Middlebury database and a set of computer generated graphical models that highlight specific aspects, along with other state-of-the-art methods for MAP-inference.","PeriodicalId":445398,"journal":{"name":"CVPR 2011","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"67","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CVPR 2011","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2011.5995652","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 67

Abstract

We study the MAP-labeling problem for graphical models by optimizing a dual problem obtained by Lagrangian decomposition. In this paper, we focus specifically on Nes-terov's optimal first-order optimization scheme for non-smooth convex programs, that has been studied for a range of other problems in computer vision and machine learning in recent years. We show that in order to obtain an efficiently convergent iteration, this approach should be augmented with a dynamic estimation of a corresponding Lip-schitz constant, leading to a runtime complexity of O(1/∊) in terms of the desired precision ∊. Additionally, we devise a stopping criterion based on a duality gap as a sound basis for competitive comparison and show how to compute it efficiently. We evaluate our results using the publicly available Middlebury database and a set of computer generated graphical models that highlight specific aspects, along with other state-of-the-art methods for MAP-inference.
拉格朗日分解和MAP标注的Nesterov格式研究
通过对拉格朗日分解得到的一个对偶问题进行优化,研究了图模型的映射标注问题。在本文中,我们特别关注非光滑凸规划的Nes-terov最优一阶优化方案,该方案近年来已被研究用于计算机视觉和机器学习中的一系列其他问题。我们证明,为了获得有效的收敛迭代,该方法应该增加相应的Lip-schitz常数的动态估计,导致运行时复杂度为O(1/)。此外,我们设计了一个基于对偶差距的停止准则,作为竞争比较的可靠基础,并展示了如何有效地计算它。我们使用公开可用的Middlebury数据库和一组计算机生成的图形模型来评估我们的结果,这些模型突出了特定方面,以及其他最先进的地图推断方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信