Possibilities and Limitations of Memristor Crossbars for Neuromorphic Computing

O. Telminov, Eugeny Gornev
{"title":"Possibilities and Limitations of Memristor Crossbars for Neuromorphic Computing","authors":"O. Telminov, Eugeny Gornev","doi":"10.1109/DCNA56428.2022.9923302","DOIUrl":null,"url":null,"abstract":"Extensive development of new neuromorphic element base – non-volatile memory elements based on new physical principles (ReRAM, FRAM etc.) is conducted. These memory elements are used to implement programmable synaptic weights in crossbar architecture, and enable neural network to conduct in-memory computations. However, the sneak currents and leakage currents are a serious limitation on the achievable dimensionality of rows and columns of the crossbar. The features of the implementation of neural networks on memristor crossbars are considered.","PeriodicalId":110836,"journal":{"name":"2022 6th Scientific School Dynamics of Complex Networks and their Applications (DCNA)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 6th Scientific School Dynamics of Complex Networks and their Applications (DCNA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DCNA56428.2022.9923302","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Extensive development of new neuromorphic element base – non-volatile memory elements based on new physical principles (ReRAM, FRAM etc.) is conducted. These memory elements are used to implement programmable synaptic weights in crossbar architecture, and enable neural network to conduct in-memory computations. However, the sneak currents and leakage currents are a serious limitation on the achievable dimensionality of rows and columns of the crossbar. The features of the implementation of neural networks on memristor crossbars are considered.
记忆电阻交叉栅用于神经形态计算的可能性和局限性
基于新物理原理(ReRAM, FRAM等)的新型神经形态元件基础-非易失性存储元件的广泛开发。这些内存元件用于实现交叉杆结构中可编程的突触权重,并使神经网络能够进行内存计算。然而,潜流和漏流严重限制了横杆行和柱的可实现尺寸。考虑了神经网络在忆阻器横栅上实现的特点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信