Reconstruction of chaotic dynamics using structurally adaptive radial basis function networks

M.S. Stankovic, B. Todorovic, B.M. Vidojkovic
{"title":"Reconstruction of chaotic dynamics using structurally adaptive radial basis function networks","authors":"M.S. Stankovic, B. Todorovic, B.M. Vidojkovic","doi":"10.1109/NEUREL.2002.1057962","DOIUrl":null,"url":null,"abstract":"Time series prediction is based on reconstruction of unknown, possibly chaotic dynamics using a certain number of delayed values of the time series and realizing the mapping between them and future values. The number of previous values used for reconstruction (usually called the embedding dimension) strongly influences the complexity of the mapping. We have applied structurally adaptive RBF networks to determine the embedding dimension and to realize the desired mapping between the past and future values. The method is tested on reconstruction of Henon maps and Lorenz chaotic attractors.","PeriodicalId":347066,"journal":{"name":"6th Seminar on Neural Network Applications in Electrical Engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2002-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"6th Seminar on Neural Network Applications in Electrical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEUREL.2002.1057962","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Time series prediction is based on reconstruction of unknown, possibly chaotic dynamics using a certain number of delayed values of the time series and realizing the mapping between them and future values. The number of previous values used for reconstruction (usually called the embedding dimension) strongly influences the complexity of the mapping. We have applied structurally adaptive RBF networks to determine the embedding dimension and to realize the desired mapping between the past and future values. The method is tested on reconstruction of Henon maps and Lorenz chaotic attractors.
基于结构自适应径向基函数网络的混沌动力学重构
时间序列预测是利用一定数量的时间序列延迟值重建未知的、可能是混沌的动态,并实现它们与未来值之间的映射。用于重建的先前值的数量(通常称为嵌入维数)对映射的复杂性有很大影响。我们采用结构自适应RBF网络来确定嵌入维数并实现过去值和未来值之间的期望映射。在Henon映射和Lorenz混沌吸引子的重建上对该方法进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信