ProfDP

Shasha Wen, Lucy Cherkasova, F. Lin, Xu Liu
{"title":"ProfDP","authors":"Shasha Wen, Lucy Cherkasova, F. Lin, Xu Liu","doi":"10.1145/3205289.3205320","DOIUrl":null,"url":null,"abstract":"New memory technologies, such as non-volatile memory and stacked memory, have reformed the memory hierarchies in modern and emerging computer architectures. It becomes common to see memories of different types integrated into the same system, as known as heterogeneous memory. Typically, a heterogeneous memory system consists of a small fast component and a large slow component. This encourages new style of data processing and exposes developers with a new problem: given two memory types, how shall we redesign applications to benefit from this memory arrangement and decide on the efficient data placement? Existing methods perform detailed memory access pattern analysis to guide data placement. However, these methods are heavyweight and ignore the interactions between software and hardware. To address these issues, we develop ProfDP, a lightweight profiler that employs differential data-centric analysis to provide intuitive guidance for data placement in heterogeneous memory. Evaluated with a number of parallel benchmarks running on a state-of-the-art emulator and a real machine with heterogeneous memory, we show that ProfDP is able to guide nearly-optimal data placement to maximize performance with minimum programming efforts.","PeriodicalId":441217,"journal":{"name":"Proceedings of the 2018 International Conference on Supercomputing","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2018 International Conference on Supercomputing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3205289.3205320","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

New memory technologies, such as non-volatile memory and stacked memory, have reformed the memory hierarchies in modern and emerging computer architectures. It becomes common to see memories of different types integrated into the same system, as known as heterogeneous memory. Typically, a heterogeneous memory system consists of a small fast component and a large slow component. This encourages new style of data processing and exposes developers with a new problem: given two memory types, how shall we redesign applications to benefit from this memory arrangement and decide on the efficient data placement? Existing methods perform detailed memory access pattern analysis to guide data placement. However, these methods are heavyweight and ignore the interactions between software and hardware. To address these issues, we develop ProfDP, a lightweight profiler that employs differential data-centric analysis to provide intuitive guidance for data placement in heterogeneous memory. Evaluated with a number of parallel benchmarks running on a state-of-the-art emulator and a real machine with heterogeneous memory, we show that ProfDP is able to guide nearly-optimal data placement to maximize performance with minimum programming efforts.
ProfDP
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信