Towards autonomous mine inspection

Pascal Gohl, M. Burri, Sammy Omari, J. Rehder, J. Nikolic, Markus Achtelik, R. Siegwart
{"title":"Towards autonomous mine inspection","authors":"Pascal Gohl, M. Burri, Sammy Omari, J. Rehder, J. Nikolic, Markus Achtelik, R. Siegwart","doi":"10.1109/CARPI.2014.7030057","DOIUrl":null,"url":null,"abstract":"The purpose of this paper is to evaluate the use of a micro aerial vehicle (MAV) for autonomous inspection and 3D reconstruction of underground mines. The goal is to manually fly an MAV equipped with cameras and a laser range sensor into a vertical shaft to collect data. This data can be used to evaluate the performance of the localization system as well as post processed to reconstruct a 3D model of the shaft. Due to its novelty of flying an MAV in a deep mine, we report gained experience of the effect of the hot, wet and dusty environment on the system as well as the influence of turbulences from vertical winds on the flight performance. Further we evaluated the quality of the recorded data and there applicability for a fully autonomous mine inspection system.","PeriodicalId":346429,"journal":{"name":"Proceedings of the 2014 3rd International Conference on Applied Robotics for the Power Industry","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"38","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2014 3rd International Conference on Applied Robotics for the Power Industry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CARPI.2014.7030057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 38

Abstract

The purpose of this paper is to evaluate the use of a micro aerial vehicle (MAV) for autonomous inspection and 3D reconstruction of underground mines. The goal is to manually fly an MAV equipped with cameras and a laser range sensor into a vertical shaft to collect data. This data can be used to evaluate the performance of the localization system as well as post processed to reconstruct a 3D model of the shaft. Due to its novelty of flying an MAV in a deep mine, we report gained experience of the effect of the hot, wet and dusty environment on the system as well as the influence of turbulences from vertical winds on the flight performance. Further we evaluated the quality of the recorded data and there applicability for a fully autonomous mine inspection system.
走向矿山自主检测
本文的目的是评估微型飞行器(MAV)在地下矿山自主检测和三维重建中的应用。其目标是手动驾驶一架装备有摄像头和激光测距传感器的无人机进入竖井收集数据。这些数据可用于评估定位系统的性能,以及后处理以重建轴的3D模型。由于微型飞行器在深井中飞行的新颖性,我们报告了热、湿、多尘环境对系统的影响以及垂直风湍流对飞行性能的影响。进一步,我们评估了记录数据的质量及其对全自动矿山检测系统的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信