Visual analysis of urban road traffic

Á. Utasi, L. Czúni
{"title":"Visual analysis of urban road traffic","authors":"Á. Utasi, L. Czúni","doi":"10.1109/IWSSIP.2008.4604462","DOIUrl":null,"url":null,"abstract":"The authors discuss the problem of understanding urban traffic motion flow in noisy environments. We propose pixel based modeling of motion directions with the help of Gaussian mixture models (GMMs) and hidden Markov models (HMMs). This way there is no need for object tracking and the proposed modification in the original hidden Markov model gives us a more usable tool for the analysis of hundreds of samples at a time. The proposed methods can be used for visualization and anomaly detection purposes.","PeriodicalId":322045,"journal":{"name":"2008 15th International Conference on Systems, Signals and Image Processing","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 15th International Conference on Systems, Signals and Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWSSIP.2008.4604462","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The authors discuss the problem of understanding urban traffic motion flow in noisy environments. We propose pixel based modeling of motion directions with the help of Gaussian mixture models (GMMs) and hidden Markov models (HMMs). This way there is no need for object tracking and the proposed modification in the original hidden Markov model gives us a more usable tool for the analysis of hundreds of samples at a time. The proposed methods can be used for visualization and anomaly detection purposes.
城市道路交通可视化分析
讨论了噪声环境下城市交通运动流的理解问题。我们利用高斯混合模型和隐马尔可夫模型提出了基于像素的运动方向建模方法。这种方法不需要对象跟踪,并且在原始隐马尔可夫模型中提出的修改为我们提供了一个更有用的工具,可以一次分析数百个样本。提出的方法可用于可视化和异常检测目的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信