Nikola Benes, L. Brim, Samuel Pastva, David Šafránek, Matej Troják, J. Červený, J. Šalagovič
{"title":"Fully Automated Attractor Analysis of Cyanobacteria Models","authors":"Nikola Benes, L. Brim, Samuel Pastva, David Šafránek, Matej Troják, J. Červený, J. Šalagovič","doi":"10.1109/ICSTCC.2018.8540762","DOIUrl":null,"url":null,"abstract":"Complex dynamics arising in biological systems can be characterised by various kinds of attractors. To that end, the task of determining attractors becomes important in modern systems analysis. Biological systems are typically formalised as highly parametrised continuous-time ODE models. Such models can be abstracted in the form of parametrised graphs. In such abstractions, attractors are observed in the form of terminal strongly connected components (tSCCs). In this paper, we demonstrate a novel method for detecting tSCCs in parametrised graphs on several models of cyanobacteria taken from the domain-specific online platform e-cyanobacterium.org.","PeriodicalId":308427,"journal":{"name":"2018 22nd International Conference on System Theory, Control and Computing (ICSTCC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 22nd International Conference on System Theory, Control and Computing (ICSTCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSTCC.2018.8540762","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Complex dynamics arising in biological systems can be characterised by various kinds of attractors. To that end, the task of determining attractors becomes important in modern systems analysis. Biological systems are typically formalised as highly parametrised continuous-time ODE models. Such models can be abstracted in the form of parametrised graphs. In such abstractions, attractors are observed in the form of terminal strongly connected components (tSCCs). In this paper, we demonstrate a novel method for detecting tSCCs in parametrised graphs on several models of cyanobacteria taken from the domain-specific online platform e-cyanobacterium.org.