{"title":"Motion reproduction using time-scaling for adaptation to difference in environmental location","authors":"T. Nozaki, T. Mizoguchi, K. Ohnishi","doi":"10.1109/ICIT.2014.6894970","DOIUrl":null,"url":null,"abstract":"This paper addresses methods to recreate humanlike motions involving direct contact with objects in robots. Motion reproduction systems using motion information extracted by bilateral teleoperation have been developed. However, conventional systems lack adaptability to difference in environmental location. The objective of this research is realization of a system, which can accommodate to the difference in environmental location. The proposed method uses position offset and time-scaling techniques. The offset value and the time-scaling ratio vary according to the difference between the extracted and current force information in real-time. The validity of the proposed method is verified by comparative experiments. The proposed method accomplishes to accurate reproduction of the stored motion. This proposed method shows the usefulness especially in duration of the contact state and amplitude of the force.","PeriodicalId":240337,"journal":{"name":"2014 IEEE International Conference on Industrial Technology (ICIT)","volume":"83 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Industrial Technology (ICIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIT.2014.6894970","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
This paper addresses methods to recreate humanlike motions involving direct contact with objects in robots. Motion reproduction systems using motion information extracted by bilateral teleoperation have been developed. However, conventional systems lack adaptability to difference in environmental location. The objective of this research is realization of a system, which can accommodate to the difference in environmental location. The proposed method uses position offset and time-scaling techniques. The offset value and the time-scaling ratio vary according to the difference between the extracted and current force information in real-time. The validity of the proposed method is verified by comparative experiments. The proposed method accomplishes to accurate reproduction of the stored motion. This proposed method shows the usefulness especially in duration of the contact state and amplitude of the force.