{"title":"Global flow control for wide area overlay networks: a cost-benefit approach","authors":"Y. Amir, B. Awerbuch, C. Danilov, J. Stanton","doi":"10.1109/OPNARC.2002.1019236","DOIUrl":null,"url":null,"abstract":"This paper presents a flow control protocol for multi-sender multi-group multicast and unicast in wide area overlay networks. The protocol is analytically grounded and achieves real world goals, such as simplicity, fairness and minimal resource usage. Flows are regulated based on the \"opportunity\" costs of network resources used and the benefit provided by the flow. In contrast to existing window-based flow control schemes, we avoid end-to-end per sender or per group feedback by looking only at the state of the virtual links between participating nodes. This produces control traffic proportional only to the number of overlay network links and independent of the number of groups, senders or receivers. We show the effectiveness of the resulting protocol through simulations and validate the simulations with live Internet experiments.","PeriodicalId":339359,"journal":{"name":"2002 IEEE Open Architectures and Network Programming Proceedings. OPENARCH 2002 (Cat. No.02EX571)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2002 IEEE Open Architectures and Network Programming Proceedings. OPENARCH 2002 (Cat. No.02EX571)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/OPNARC.2002.1019236","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21
Abstract
This paper presents a flow control protocol for multi-sender multi-group multicast and unicast in wide area overlay networks. The protocol is analytically grounded and achieves real world goals, such as simplicity, fairness and minimal resource usage. Flows are regulated based on the "opportunity" costs of network resources used and the benefit provided by the flow. In contrast to existing window-based flow control schemes, we avoid end-to-end per sender or per group feedback by looking only at the state of the virtual links between participating nodes. This produces control traffic proportional only to the number of overlay network links and independent of the number of groups, senders or receivers. We show the effectiveness of the resulting protocol through simulations and validate the simulations with live Internet experiments.