Effective data curation for frequently asked questions

Kohtaroh Miyamoto, Akira Koseki, Masaki Ohno
{"title":"Effective data curation for frequently asked questions","authors":"Kohtaroh Miyamoto, Akira Koseki, Masaki Ohno","doi":"10.1109/SOLI.2017.8120960","DOIUrl":null,"url":null,"abstract":"Frequently-asked-question (FAQ) systems are effective in operating and reducing costs of IT services. Basically, FAQ data preparation requires data curation of available heterogeneous question-and-answer (QA) data sets and creating FAQ clusters. We identified that the labor intensiveness of data curation is a major problem and that it strongly affects the final FAQ output quality. To deal with this problem, we designed a FAQ creation system with a strong focus on the effectiveness of its data-curation component. We conducted a field study by inspecting two sources: incident reports and a QA forum. The first source of incident reports showed a high F-score of 89.9% (precision: 82.5%, recall: 100%). We also applied the same set of parameters to 300 entries of the QA forum and achieved an F-score of 94.3% (precision: 94.9%, recall: 93.8%).","PeriodicalId":190544,"journal":{"name":"2017 IEEE International Conference on Service Operations and Logistics, and Informatics (SOLI)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Service Operations and Logistics, and Informatics (SOLI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SOLI.2017.8120960","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Frequently-asked-question (FAQ) systems are effective in operating and reducing costs of IT services. Basically, FAQ data preparation requires data curation of available heterogeneous question-and-answer (QA) data sets and creating FAQ clusters. We identified that the labor intensiveness of data curation is a major problem and that it strongly affects the final FAQ output quality. To deal with this problem, we designed a FAQ creation system with a strong focus on the effectiveness of its data-curation component. We conducted a field study by inspecting two sources: incident reports and a QA forum. The first source of incident reports showed a high F-score of 89.9% (precision: 82.5%, recall: 100%). We also applied the same set of parameters to 300 entries of the QA forum and achieved an F-score of 94.3% (precision: 94.9%, recall: 93.8%).
针对常见问题的有效数据管理
常见问题解答系统在操作和降低IT服务成本方面是有效的。基本上,FAQ数据准备需要对可用的异构问答(QA)数据集进行数据管理,并创建FAQ集群。我们发现,数据管理的劳动强度是一个主要问题,它强烈影响最终FAQ输出的质量。为了解决这个问题,我们设计了一个FAQ创建系统,重点关注其数据管理组件的有效性。我们通过检查两个来源进行了实地研究:事件报告和QA论坛。事件报告的第一个来源显示出高达89.9%的f分(准确率:82.5%,召回率:100%)。我们还将相同的参数集应用于300个QA论坛条目,并获得了94.3%的f分(精度:94.9%,召回率:93.8%)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信