A mutation adaptation mechanism for Differential Evolution algorithm

Johanna Aalto, J. Lampinen
{"title":"A mutation adaptation mechanism for Differential Evolution algorithm","authors":"Johanna Aalto, J. Lampinen","doi":"10.1109/CEC.2013.6557553","DOIUrl":null,"url":null,"abstract":"A new adaptive Differential Evolution algorithm called EWMA-DE is proposed. In original Differential Evolution algorithm three different control parameter values must be pre-specified by the user a priori; Population size, crossover constant and mutation scale factor. Choosing good parameters can be very difficult for the user, especially for the practitioners. In the proposed algorithm the mutation scale factor is adapted using a novel exponential moving average based mechanism, while the other control parameters are kept fixed as in standard Differential Evolution. The algorithm was initially evaluated by using the set of 25 benchmark functions provided by CEC2005 special session on real-parameter optimization and compared with the results of standard DE/rand/1/bin version. Results turned out to be rather promising; EWMA-DE outperformed the original Differential Evolution in majority of tested cases, which is demonstrating the potential of the proposed adaptation approach.","PeriodicalId":211988,"journal":{"name":"2013 IEEE Congress on Evolutionary Computation","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Congress on Evolutionary Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2013.6557553","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

A new adaptive Differential Evolution algorithm called EWMA-DE is proposed. In original Differential Evolution algorithm three different control parameter values must be pre-specified by the user a priori; Population size, crossover constant and mutation scale factor. Choosing good parameters can be very difficult for the user, especially for the practitioners. In the proposed algorithm the mutation scale factor is adapted using a novel exponential moving average based mechanism, while the other control parameters are kept fixed as in standard Differential Evolution. The algorithm was initially evaluated by using the set of 25 benchmark functions provided by CEC2005 special session on real-parameter optimization and compared with the results of standard DE/rand/1/bin version. Results turned out to be rather promising; EWMA-DE outperformed the original Differential Evolution in majority of tested cases, which is demonstrating the potential of the proposed adaptation approach.
差分进化算法的突变适应机制
提出了一种新的自适应差分进化算法EWMA-DE。在原有的差分进化算法中,必须由用户先验地预先指定三个不同的控制参数值;群体大小、交叉常数和突变尺度因子。选择好的参数对于用户来说是非常困难的,特别是对于从业者。在该算法中,变异尺度因子采用一种新的基于指数移动平均的机制,而其他控制参数与标准微分进化一样保持固定。采用CEC2005实参数优化专题会议提供的25个基准函数集对算法进行初步评价,并与标准DE/rand/1/bin版本的结果进行比较。结果是相当有希望的;在大多数测试案例中,EWMA-DE优于原始的差分进化,这证明了所提出的适应方法的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信