Object Based Remote Sensing Using Sentinel Data

C. McLaughlin, A. Woodley, S. Geva, Timothy Chappell, W. Kelly, W. Boles, Lance De Vine, Holly Hutson
{"title":"Object Based Remote Sensing Using Sentinel Data","authors":"C. McLaughlin, A. Woodley, S. Geva, Timothy Chappell, W. Kelly, W. Boles, Lance De Vine, Holly Hutson","doi":"10.1109/DICTA51227.2020.9363427","DOIUrl":null,"url":null,"abstract":"Identifying changes on the Earth's surface is one of the most fundamental aspects of Earth observation from satellite images. Historically, the predominant form of analysis has measured change at a pixel level. Here, we present a new strategy that conducts the analysis based on objects. The objects are placed inside a random forest regressor. We have tested our approach in Queensland, Australia using Sentinel data. We find that the use of object-based approach either outperforms or is comparable to alternative approaches.","PeriodicalId":348164,"journal":{"name":"2020 Digital Image Computing: Techniques and Applications (DICTA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Digital Image Computing: Techniques and Applications (DICTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DICTA51227.2020.9363427","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Identifying changes on the Earth's surface is one of the most fundamental aspects of Earth observation from satellite images. Historically, the predominant form of analysis has measured change at a pixel level. Here, we present a new strategy that conducts the analysis based on objects. The objects are placed inside a random forest regressor. We have tested our approach in Queensland, Australia using Sentinel data. We find that the use of object-based approach either outperforms or is comparable to alternative approaches.
利用哨兵数据的基于对象的遥感
从卫星图像中识别地球表面的变化是地球观测最基本的方面之一。从历史上看,主要的分析形式是在像素水平上测量变化。在这里,我们提出了一种基于对象进行分析的新策略。对象被放置在随机森林回归器中。我们在澳大利亚昆士兰用Sentinel的数据测试了我们的方法。我们发现,使用基于对象的方法优于或可与其他方法相媲美。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信