Optimal Cell Structure/Operation Design of 3D Semicircular Split-gate Cells for Ultra-high-density Flash Memory

T. Morooka, T. Ishikawa, M. Komura, T. Kato, Y. Koyama, Y. Han, Y. Sugawara, D. Kuwabara, Y. Arayashiki, A. Murayama, K. Nishiyama, K. Sugimae, T. Ogura, H. Takeda, N. Kariya, Y. Goki, S. Konuma, Y. Kamiya, H. Yamashita, H. Shiga, K. Itagaki, R. Tanaka, T. Maeda, N. Ohtani, M. Fujiwara
{"title":"Optimal Cell Structure/Operation Design of 3D Semicircular Split-gate Cells for Ultra-high-density Flash Memory","authors":"T. Morooka, T. Ishikawa, M. Komura, T. Kato, Y. Koyama, Y. Han, Y. Sugawara, D. Kuwabara, Y. Arayashiki, A. Murayama, K. Nishiyama, K. Sugimae, T. Ogura, H. Takeda, N. Kariya, Y. Goki, S. Konuma, Y. Kamiya, H. Yamashita, H. Shiga, K. Itagaki, R. Tanaka, T. Maeda, N. Ohtani, M. Fujiwara","doi":"10.1109/vlsitechnologyandcir46769.2022.9830513","DOIUrl":null,"url":null,"abstract":"Three-dimensional (3D) semicircular split-gate floating-gate (FG) cells have been successfully developed for both boosting cell density per footprint and expanding the capability of multiple bits per cell. FG structure engineering mitigates program/erase (P/E) window reduction due to the fringing field effect in the split-gate cell. Front-side and back-side cells which share the same channel can be separately read by reducing back-side cell leakage current by means of back-gate bias control. Moreover, FG structure enables tight Vth distribution by suppressing random telegraph noise (RTN) increase due to small cell area. As a result, the distributions of four bits/cell (QLC) and five bits/cell (PLC) have been experimentally demonstrated by the split-gate cell arrays for the first time.","PeriodicalId":332454,"journal":{"name":"2022 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/vlsitechnologyandcir46769.2022.9830513","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Three-dimensional (3D) semicircular split-gate floating-gate (FG) cells have been successfully developed for both boosting cell density per footprint and expanding the capability of multiple bits per cell. FG structure engineering mitigates program/erase (P/E) window reduction due to the fringing field effect in the split-gate cell. Front-side and back-side cells which share the same channel can be separately read by reducing back-side cell leakage current by means of back-gate bias control. Moreover, FG structure enables tight Vth distribution by suppressing random telegraph noise (RTN) increase due to small cell area. As a result, the distributions of four bits/cell (QLC) and five bits/cell (PLC) have been experimentally demonstrated by the split-gate cell arrays for the first time.
超高密度闪存三维半圆形分栅单元的优化结构/操作设计
三维(3D)半圆分栅浮栅(FG)单元已经成功开发,既可以提高每个单元的密度,又可以扩展每个单元的多比特容量。FG结构工程减轻了由于分栅单元中的边缘场效应而导致的程序/擦除(P/E)窗口减小。通过后门偏置控制减少背面电池漏电流,可以将共用同一通道的前后电池分开读取。此外,FG结构通过抑制由于小区面积小而增加的随机电报噪声(RTN),使Vth分布紧密。实验结果表明,四比特/单元(QLC)和五比特/单元(PLC)的分布首次得到了实验证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信