A Robust Sign Language Recognition System with Multiple Wi-Fi Devices

Jiacheng Shang, Jie Wu
{"title":"A Robust Sign Language Recognition System with Multiple Wi-Fi Devices","authors":"Jiacheng Shang, Jie Wu","doi":"10.1145/3097620.3097624","DOIUrl":null,"url":null,"abstract":"Sign language is important since it provides a way for us to the deaf culture and more opportunities to communicate with those who are deaf or hard of hearing. Since sign language chiefly uses body languages to convey meaning, Human Activity Recognition (HAR) techniques can be used to recognize them for some sign language translation applications. In this paper, we show for the first time that Wi-Fi signals can be used to recognize sign language. The key intuition is that different hand and arm motions introduce different multi-path distortions in Wi-Fi signals and generate different unique patterns in the time-series of Channel State Information (CSI). More specifically, we propose a Wi-Fi signal-based sign language recognition system called WiSign. Different from existing Wi-Fi signal-based human activity recognition systems, WiSign uses 3 Wi-Fi devices to improve the recognition performance. We implemented the WiSign using a TP-Link TL-WR1043ND Wi-Fi router and two Lenovo X100e laptops. The evaluation results show that our system can achieve a mean prediction accuracy of 93.8% and mean false positive of 1.55%.","PeriodicalId":109303,"journal":{"name":"Proceedings of the Workshop on Mobility in the Evolving Internet Architecture","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"44","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Workshop on Mobility in the Evolving Internet Architecture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3097620.3097624","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 44

Abstract

Sign language is important since it provides a way for us to the deaf culture and more opportunities to communicate with those who are deaf or hard of hearing. Since sign language chiefly uses body languages to convey meaning, Human Activity Recognition (HAR) techniques can be used to recognize them for some sign language translation applications. In this paper, we show for the first time that Wi-Fi signals can be used to recognize sign language. The key intuition is that different hand and arm motions introduce different multi-path distortions in Wi-Fi signals and generate different unique patterns in the time-series of Channel State Information (CSI). More specifically, we propose a Wi-Fi signal-based sign language recognition system called WiSign. Different from existing Wi-Fi signal-based human activity recognition systems, WiSign uses 3 Wi-Fi devices to improve the recognition performance. We implemented the WiSign using a TP-Link TL-WR1043ND Wi-Fi router and two Lenovo X100e laptops. The evaluation results show that our system can achieve a mean prediction accuracy of 93.8% and mean false positive of 1.55%.
多Wi-Fi设备的鲁棒手语识别系统
手语很重要,因为它为我们提供了一种进入聋人文化的方式,并为我们提供了更多与聋人或听力障碍者交流的机会。由于手语主要使用肢体语言来传达意思,因此在一些手语翻译应用中,可以使用人类活动识别(HAR)技术来识别它们。在本文中,我们首次展示了Wi-Fi信号可以用于识别手语。关键的直觉是,不同的手和手臂运动会在Wi-Fi信号中引入不同的多路径失真,并在信道状态信息(CSI)的时间序列中产生不同的独特模式。更具体地说,我们提出了一个基于Wi-Fi信号的手语识别系统,称为WiSign。与现有基于Wi-Fi信号的人体活动识别系统不同,WiSign使用3个Wi-Fi设备来提高识别性能。我们使用TP-Link TL-WR1043ND Wi-Fi路由器和两台联想X100e笔记本电脑实现了WiSign。评价结果表明,该系统的平均预测准确率为93.8%,平均假阳性为1.55%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信