A New Measure Based in the Rough Set Theory to Estimate the Training Set Quality

Y. Mota, Rafael Bello, Alberto Taboada-Crispí, A. Nowé, M. Lorenzo, G. C. Cardoso
{"title":"A New Measure Based in the Rough Set Theory to Estimate the Training Set Quality","authors":"Y. Mota, Rafael Bello, Alberto Taboada-Crispí, A. Nowé, M. Lorenzo, G. C. Cardoso","doi":"10.1109/SYNASC.2006.6","DOIUrl":null,"url":null,"abstract":"Due to the wide availability of huge amounts of data in electronic forms, the necessity of turning such data into useful knowledge has increased. This is a proposal of learning from examples. In this paper, we propose measures to evaluate the quality of training sets used by algorithms for learning classification. Our training set assessment relies on measures provided by rough sets theory. Our experimental results involved three classifiers (k-NN, C-4.5 and MLP) applied to international data bases. The new measure we propose shows good results on these test cases","PeriodicalId":309740,"journal":{"name":"2006 Eighth International Symposium on Symbolic and Numeric Algorithms for Scientific Computing","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 Eighth International Symposium on Symbolic and Numeric Algorithms for Scientific Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SYNASC.2006.6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

Due to the wide availability of huge amounts of data in electronic forms, the necessity of turning such data into useful knowledge has increased. This is a proposal of learning from examples. In this paper, we propose measures to evaluate the quality of training sets used by algorithms for learning classification. Our training set assessment relies on measures provided by rough sets theory. Our experimental results involved three classifiers (k-NN, C-4.5 and MLP) applied to international data bases. The new measure we propose shows good results on these test cases
一种基于粗糙集理论的训练集质量估计方法
由于电子形式的大量数据的广泛可用性,将这些数据转化为有用知识的必要性增加了。这是一个以身作则的建议。在本文中,我们提出了评估算法用于学习分类的训练集质量的方法。我们的训练集评估依赖于粗糙集理论提供的度量。我们的实验结果涉及三种分类器(k-NN, C-4.5和MLP)应用于国际数据库。我们提出的新度量在这些测试用例上显示了良好的结果
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信