A Bayesian Approach to Online Simulation Optimization with Streaming Input Data

Tianyi Liu, Yifan Lin, Enlu Zhou
{"title":"A Bayesian Approach to Online Simulation Optimization with Streaming Input Data","authors":"Tianyi Liu, Yifan Lin, Enlu Zhou","doi":"10.1109/WSC52266.2021.9715392","DOIUrl":null,"url":null,"abstract":"We consider simulation optimization under input uncertainty, where the unknown input parameter is estimated from streaming data arriving in batches over time. Moreover, data may depend on the decision of the time when they are generated. We take an online approach to jointly estimate the input parameter via Bayesian posterior distribution and update the decision by applying stochastic gradient descent (SGD) on the Bayesian average of the objective function. We show the convergence of our approach. In particular, our consistency result of Bayesian posterior distribution with decision-dependent data might be of independent interest to Bayesian estimation. We demonstrate the empirical performance of our approach on a simple numerical example.","PeriodicalId":369368,"journal":{"name":"2021 Winter Simulation Conference (WSC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Winter Simulation Conference (WSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WSC52266.2021.9715392","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

We consider simulation optimization under input uncertainty, where the unknown input parameter is estimated from streaming data arriving in batches over time. Moreover, data may depend on the decision of the time when they are generated. We take an online approach to jointly estimate the input parameter via Bayesian posterior distribution and update the decision by applying stochastic gradient descent (SGD) on the Bayesian average of the objective function. We show the convergence of our approach. In particular, our consistency result of Bayesian posterior distribution with decision-dependent data might be of independent interest to Bayesian estimation. We demonstrate the empirical performance of our approach on a simple numerical example.
流输入数据在线仿真优化的贝叶斯方法
我们考虑了输入不确定性下的模拟优化,其中未知的输入参数是根据随时间分批到达的流数据估计的。此外,数据可能取决于生成时间的决定。我们采用在线方法通过贝叶斯后验分布联合估计输入参数,并通过对目标函数的贝叶斯平均值应用随机梯度下降(SGD)来更新决策。我们展示了我们方法的收敛性。特别是,我们的贝叶斯后验分布与决策相关数据的一致性结果可能对贝叶斯估计有独立的兴趣。我们在一个简单的数值例子上证明了我们的方法的经验性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信