Using natural language to integrate, evaluate, and optimize extracted knowledge bases

Doug Downey, Chandra Bhagavatula, A. Yates
{"title":"Using natural language to integrate, evaluate, and optimize extracted knowledge bases","authors":"Doug Downey, Chandra Bhagavatula, A. Yates","doi":"10.1145/2509558.2509569","DOIUrl":null,"url":null,"abstract":"Web Information Extraction (WIE) systems extract billions of unique facts, but integrating the assertions into a coherent knowledge base and evaluating across different WIE techniques remains a challenge. We propose a framework that utilizes natural language to integrate and evaluate extracted knowledge bases (KBs). In the framework, KBs are integrated by exchanging probability distributions over natural language, and evaluated by how well the output distributions predict held-out text. We describe the advantages of the approach, and detail remaining research challenges.","PeriodicalId":371465,"journal":{"name":"Conference on Automated Knowledge Base Construction","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference on Automated Knowledge Base Construction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2509558.2509569","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Web Information Extraction (WIE) systems extract billions of unique facts, but integrating the assertions into a coherent knowledge base and evaluating across different WIE techniques remains a challenge. We propose a framework that utilizes natural language to integrate and evaluate extracted knowledge bases (KBs). In the framework, KBs are integrated by exchanging probability distributions over natural language, and evaluated by how well the output distributions predict held-out text. We describe the advantages of the approach, and detail remaining research challenges.
使用自然语言来整合、评估和优化提取的知识库
Web信息提取(Web Information Extraction, WIE)系统提取了数十亿个独特的事实,但是将断言集成到一个连贯的知识库中并跨不同的WIE技术进行评估仍然是一个挑战。我们提出了一个框架,利用自然语言来整合和评估提取的知识库(KBs)。在框架中,KBs通过交换自然语言上的概率分布来集成,并通过输出分布预测持有文本的程度来评估。我们描述了该方法的优点,并详细介绍了剩余的研究挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信