Multiband image classification of astronomical objects

A. Martinazzo, N. Hirata
{"title":"Multiband image classification of astronomical objects","authors":"A. Martinazzo, N. Hirata","doi":"10.5753/sibgrapi.est.2019.8314","DOIUrl":null,"url":null,"abstract":"Astronomy has entered the era of large digital sky surveys, transitioning from a relatively data-scarce field of study to a very data-rich one. The images coming from these new surveys are hyperspectral (having up to a few dozen bands) and noisy (due to limitations on telescope resolution and atmospheric conditions), present faint and saturated signals, and can amount to tens of terabytes. This unique set of characteristics make them very attractive for trying out deep learning methods. In this short paper, we present a multiband image classifier for stars, galaxies and quasars, and propose steps towards a semi-supervised scheme that could enable the discovery of new objects.","PeriodicalId":119031,"journal":{"name":"Anais Estendidos da Conference on Graphics, Patterns and Images (SIBGRAPI)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais Estendidos da Conference on Graphics, Patterns and Images (SIBGRAPI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/sibgrapi.est.2019.8314","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Astronomy has entered the era of large digital sky surveys, transitioning from a relatively data-scarce field of study to a very data-rich one. The images coming from these new surveys are hyperspectral (having up to a few dozen bands) and noisy (due to limitations on telescope resolution and atmospheric conditions), present faint and saturated signals, and can amount to tens of terabytes. This unique set of characteristics make them very attractive for trying out deep learning methods. In this short paper, we present a multiband image classifier for stars, galaxies and quasars, and propose steps towards a semi-supervised scheme that could enable the discovery of new objects.
天体的多波段图像分类
天文学已经进入了大型数字巡天的时代,从一个相对缺乏数据的研究领域转变为一个数据非常丰富的研究领域。来自这些新调查的图像是高光谱的(有多达几十个波段)和嘈杂的(由于望远镜分辨率和大气条件的限制),呈现微弱和饱和的信号,并且可以达到几十太字节。这组独特的特征使它们对尝试深度学习方法非常有吸引力。在这篇短文中,我们提出了一个用于恒星、星系和类星体的多波段图像分类器,并提出了实现半监督方案的步骤,该方案可以发现新的物体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信