Hyperspectral Unmixing Using Deep Learning

Chen-Jian Wang, Hong Li, Y. Tang
{"title":"Hyperspectral Unmixing Using Deep Learning","authors":"Chen-Jian Wang, Hong Li, Y. Tang","doi":"10.1109/ICWAPR48189.2019.8946465","DOIUrl":null,"url":null,"abstract":"Due to factors such as low spatial resolution, microscopic material mixing, and multiple scattering, hyperspectral images generally have problems with mixed pixels. This paper proposes two network structures under the framework of deep learning, which can be well applied to hyperspectral unmixing: 1) network architecture based on spectral information, the architecture uses a fully connected neural network and the spectral vector is used as an input for unmixing; 2) network architecture based on spatial-spectral information, the architecture further combines the convolutional neural networks to fuse the spatial information and spectral information of the hyperspectral image for unmixing. Experiments on simulated dataset and real dataset show the efficiency of our approach.","PeriodicalId":436840,"journal":{"name":"2019 International Conference on Wavelet Analysis and Pattern Recognition (ICWAPR)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Wavelet Analysis and Pattern Recognition (ICWAPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICWAPR48189.2019.8946465","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Due to factors such as low spatial resolution, microscopic material mixing, and multiple scattering, hyperspectral images generally have problems with mixed pixels. This paper proposes two network structures under the framework of deep learning, which can be well applied to hyperspectral unmixing: 1) network architecture based on spectral information, the architecture uses a fully connected neural network and the spectral vector is used as an input for unmixing; 2) network architecture based on spatial-spectral information, the architecture further combines the convolutional neural networks to fuse the spatial information and spectral information of the hyperspectral image for unmixing. Experiments on simulated dataset and real dataset show the efficiency of our approach.
使用深度学习的高光谱解混
由于空间分辨率低、微观物质混合、多次散射等因素,高光谱图像普遍存在像元混合的问题。本文在深度学习框架下提出了两种可以很好地应用于高光谱解混的网络结构:1)基于光谱信息的网络结构,该结构采用全连接神经网络,将光谱向量作为解混的输入;2)基于空间光谱信息的网络架构,该架构进一步结合卷积神经网络,融合高光谱图像的空间信息和光谱信息进行解混。在模拟数据集和真实数据集上的实验表明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信