Question Answering Using Semantic Query Graphs: A Replication Study

Alexandru Ianta, Eleni Stroulia
{"title":"Question Answering Using Semantic Query Graphs: A Replication Study","authors":"Alexandru Ianta, Eleni Stroulia","doi":"10.1109/IISA56318.2022.9904390","DOIUrl":null,"url":null,"abstract":"Semantic methods for natural language question answering are better suited for domain-specific applications than their deep-learning counterparts because they can utilize domain-specific structured data and do not require the large training datasets typically necessary for deep learning. Zou et al. describe a method for RDF-based question answering in which the input question is transformed into a semantic query graph that is subsequently mapped to a subgraph of the domain knowledge graph containing the answer. In this work we replicate this approach and evaluate it using the Question Answering over Linked Data (QALD) dataset. Of the 131 relevant questions in this dataset, the method answers 41 questions, 23 of which are answered correctly, achieving an Fl-score of 0.201. Integration of state-of-the-art named entity recognition (NER) techniques provide a path forward for improving performance.","PeriodicalId":217519,"journal":{"name":"2022 13th International Conference on Information, Intelligence, Systems & Applications (IISA)","volume":"152 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 13th International Conference on Information, Intelligence, Systems & Applications (IISA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IISA56318.2022.9904390","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Semantic methods for natural language question answering are better suited for domain-specific applications than their deep-learning counterparts because they can utilize domain-specific structured data and do not require the large training datasets typically necessary for deep learning. Zou et al. describe a method for RDF-based question answering in which the input question is transformed into a semantic query graph that is subsequently mapped to a subgraph of the domain knowledge graph containing the answer. In this work we replicate this approach and evaluate it using the Question Answering over Linked Data (QALD) dataset. Of the 131 relevant questions in this dataset, the method answers 41 questions, 23 of which are answered correctly, achieving an Fl-score of 0.201. Integration of state-of-the-art named entity recognition (NER) techniques provide a path forward for improving performance.
使用语义查询图的问答:一项复制研究
自然语言问答的语义方法比深度学习的语义方法更适合于特定领域的应用,因为它们可以利用特定领域的结构化数据,不需要深度学习通常需要的大型训练数据集。邹等人描述了一种基于rdf的问答方法,该方法将输入的问题转换为语义查询图,该查询图随后映射到包含答案的领域知识图的子图。在这项工作中,我们复制了这种方法,并使用关联数据问答(QALD)数据集对其进行了评估。在该数据集中的131个相关问题中,该方法回答了41个问题,其中23个回答正确,达到了0.201的fl分数。最先进的命名实体识别(NER)技术的集成为提高性能提供了一条前进的道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信