Design and Simulation of Synchronous Buck Converter in Comparison with Regular Buck Converter

Hossein Zomorodi, E. Nazari
{"title":"Design and Simulation of Synchronous Buck Converter in Comparison with Regular Buck Converter","authors":"Hossein Zomorodi, E. Nazari","doi":"10.31763/ijrcs.v2i1.538","DOIUrl":null,"url":null,"abstract":"In a variety of low-power applications, a step-down dc-dc converter is used to reduce the voltage from a higher level. The two types of dc-dc converters are a regular buck and synchronous buck. The synchronous buck utilizes two switches and one diode, whereas the regular buck uses one switch and one diode. Many converters rely on the power components' switching qualities to work. A second MOSFET is required due to the diode's higher conduction losses. Because of the diode's conduction losses, the converter's efficiency may be reduced. The use of a synchronous buck converter improves efficiency by reducing diode losses. The main goal of this study is to compare and contrast these two low-power step-down converters. The simulation in this work was performed using the LTSPICE program.","PeriodicalId":409364,"journal":{"name":"International Journal of Robotics and Control Systems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Robotics and Control Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31763/ijrcs.v2i1.538","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In a variety of low-power applications, a step-down dc-dc converter is used to reduce the voltage from a higher level. The two types of dc-dc converters are a regular buck and synchronous buck. The synchronous buck utilizes two switches and one diode, whereas the regular buck uses one switch and one diode. Many converters rely on the power components' switching qualities to work. A second MOSFET is required due to the diode's higher conduction losses. Because of the diode's conduction losses, the converter's efficiency may be reduced. The use of a synchronous buck converter improves efficiency by reducing diode losses. The main goal of this study is to compare and contrast these two low-power step-down converters. The simulation in this work was performed using the LTSPICE program.
同步降压变换器与常规降压变换器的比较与仿真
在各种低功耗应用中,降压dc-dc转换器用于从较高电平降低电压。两种类型的dc-dc转换器是常规降压和同步降压。同步降压使用两个开关和一个二极管,而常规降压使用一个开关和一个二极管。许多转换器依赖于电源元件的开关质量来工作。由于二极管的传导损耗较高,需要第二个MOSFET。由于二极管的导通损耗,可能会降低变换器的效率。使用同步降压变换器通过减少二极管损耗来提高效率。本研究的主要目的是比较和对比这两种低功率降压转换器。本文采用LTSPICE程序进行仿真。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信