Deep Super Resolution for Recovering Physiological Information from Videos

Daniel J. McDuff
{"title":"Deep Super Resolution for Recovering Physiological Information from Videos","authors":"Daniel J. McDuff","doi":"10.1109/CVPRW.2018.00185","DOIUrl":null,"url":null,"abstract":"Imaging photoplethysmography (iPPG) allows for remote measurement of vital signs from the human skin. In some applications the skin region of interest may only occupy a small number of pixels (e.g., if an individual is a large distance from the imager.) We present a novel pipeline for iPPG using an image super-resolution preprocessing step that can reduce the mean absolute error in heart rate prediction by over 30%. Furthermore, deep learning-based image super-resolution outperforms standard interpolation methods. Our method can be used in conjunction with any existing iPPG algorithm to estimate physiological parameters. It is particularly promising for analysis of low resolution and spatially compressed videos, where otherwise the pulse signal would be too weak.","PeriodicalId":150600,"journal":{"name":"2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"38","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPRW.2018.00185","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 38

Abstract

Imaging photoplethysmography (iPPG) allows for remote measurement of vital signs from the human skin. In some applications the skin region of interest may only occupy a small number of pixels (e.g., if an individual is a large distance from the imager.) We present a novel pipeline for iPPG using an image super-resolution preprocessing step that can reduce the mean absolute error in heart rate prediction by over 30%. Furthermore, deep learning-based image super-resolution outperforms standard interpolation methods. Our method can be used in conjunction with any existing iPPG algorithm to estimate physiological parameters. It is particularly promising for analysis of low resolution and spatially compressed videos, where otherwise the pulse signal would be too weak.
从视频中恢复生理信息的深度超分辨率
成像光体积脉搏图(iPPG)允许从人体皮肤远程测量生命体征。在一些应用中,感兴趣的皮肤区域可能只占用少量像素(例如,如果个体距离成像仪很远)。我们提出了一种新的iPPG管道,使用图像超分辨率预处理步骤,可以将心率预测的平均绝对误差降低30%以上。此外,基于深度学习的图像超分辨率优于标准插值方法。我们的方法可以与任何现有的iPPG算法结合使用来估计生理参数。它特别有希望分析低分辨率和空间压缩视频,否则脉冲信号会太弱。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信