Strategies for Parallelizing Swarm Intelligence Algorithms

F. Cicirelli, G. Folino, Agostino Forestiero, Andrea Giordano, C. Mastroianni, G. Spezzano
{"title":"Strategies for Parallelizing Swarm Intelligence Algorithms","authors":"F. Cicirelli, G. Folino, Agostino Forestiero, Andrea Giordano, C. Mastroianni, G. Spezzano","doi":"10.1109/PDP.2015.101","DOIUrl":null,"url":null,"abstract":"Swarm intelligence algorithms, based on multi-agent systems, are often used to solve complex problems that are not affordable through classical centralized/deterministic solutions. In many cases, to enhance the performance of such algorithms, the computation can be distributed to parallel/distributed nodes, in accordance with different strategies. Specifically, parallelization can be achieved either by partitioning the space in which agents operate among the nodes, or by assigning the entire space to each node but distributing input data through a sampling approach. Another choice is whether or not the management of conflicts is needed to prevent possible loss of data consistency. This paper discusses such issues, while referring to two well-known types of swarm intelligence algorithms -- ants and flocking -- and compares the mentioned strategies, evaluating the performance results in terms of speedup.","PeriodicalId":285111,"journal":{"name":"2015 23rd Euromicro International Conference on Parallel, Distributed, and Network-Based Processing","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 23rd Euromicro International Conference on Parallel, Distributed, and Network-Based Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PDP.2015.101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Swarm intelligence algorithms, based on multi-agent systems, are often used to solve complex problems that are not affordable through classical centralized/deterministic solutions. In many cases, to enhance the performance of such algorithms, the computation can be distributed to parallel/distributed nodes, in accordance with different strategies. Specifically, parallelization can be achieved either by partitioning the space in which agents operate among the nodes, or by assigning the entire space to each node but distributing input data through a sampling approach. Another choice is whether or not the management of conflicts is needed to prevent possible loss of data consistency. This paper discusses such issues, while referring to two well-known types of swarm intelligence algorithms -- ants and flocking -- and compares the mentioned strategies, evaluating the performance results in terms of speedup.
并行化群体智能算法的策略
基于多智能体系统的群智能算法通常用于解决传统集中式/确定性解决方案无法解决的复杂问题。在许多情况下,为了提高这类算法的性能,可以根据不同的策略将计算分布到并行/分布式节点上。具体来说,并行化可以通过对代理在节点间操作的空间进行分区来实现,也可以通过将整个空间分配给每个节点,但通过采样方法分发输入数据来实现。另一个选择是是否需要管理冲突以防止可能的数据一致性丢失。本文讨论了这些问题,同时参考了两种众所周知的群体智能算法——蚂蚁和群集——并比较了所提到的策略,从加速的角度评估了性能结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信