Constant modulus hybrid recursive and least mean squared algorithm performance comparable to unscented Kalman filter for blind beamforming

V. Ranganathan, G. Prabha, K. Narayanankutty
{"title":"Constant modulus hybrid recursive and least mean squared algorithm performance comparable to unscented Kalman filter for blind beamforming","authors":"V. Ranganathan, G. Prabha, K. Narayanankutty","doi":"10.1109/INDICON.2016.7838889","DOIUrl":null,"url":null,"abstract":"In this paper, we propose an adaptive filtering algorithm, Hybrid Recursive and Least Mean Square-based Constant Modulus Algorithm (RLS-LMS-CMA) for optimized blind beamforming for a Uniform Linear Array (ULA). We consider that Recursive Least Square-based Constant Modulus Algorithm (RLS-CMA) and Least Mean Square-based Constant Modulus Algorithm (LMS-CMA) algorithms are time tested. Therefore, we investigated a combination of RLS-LMS-CMA algorithm. We achieve similar tracking performance when compared to Unscented Kalman Filter-based Constant Modulus Algorithm (UKF-CMA) with minimal computational complexity. Simulations are carried out to compare the performance of RLS-LMS-CMA with other state-of-the-art algorithms. Results obtained indicate that proposed algorithm leads to an equivalent tracking ability and convergence rate of UKF-CMA algorithm.","PeriodicalId":283953,"journal":{"name":"2016 IEEE Annual India Conference (INDICON)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Annual India Conference (INDICON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INDICON.2016.7838889","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In this paper, we propose an adaptive filtering algorithm, Hybrid Recursive and Least Mean Square-based Constant Modulus Algorithm (RLS-LMS-CMA) for optimized blind beamforming for a Uniform Linear Array (ULA). We consider that Recursive Least Square-based Constant Modulus Algorithm (RLS-CMA) and Least Mean Square-based Constant Modulus Algorithm (LMS-CMA) algorithms are time tested. Therefore, we investigated a combination of RLS-LMS-CMA algorithm. We achieve similar tracking performance when compared to Unscented Kalman Filter-based Constant Modulus Algorithm (UKF-CMA) with minimal computational complexity. Simulations are carried out to compare the performance of RLS-LMS-CMA with other state-of-the-art algorithms. Results obtained indicate that proposed algorithm leads to an equivalent tracking ability and convergence rate of UKF-CMA algorithm.
恒模混合递推和最小均方算法的性能可与无气味卡尔曼滤波相媲美
在本文中,我们提出了一种自适应滤波算法,混合递归和基于最小均方的恒模算法(RLS-LMS-CMA),用于优化均匀线性阵列(ULA)的盲波束形成。我们认为基于递推最小二乘的恒模算法(RLS-CMA)和基于最小均方的恒模算法(LMS-CMA)是经过时间检验的。因此,我们研究了RLS-LMS-CMA算法的组合。与基于Unscented卡尔曼滤波的恒模算法(UKF-CMA)相比,我们以最小的计算复杂度实现了相似的跟踪性能。通过仿真比较了RLS-LMS-CMA算法与其他先进算法的性能。结果表明,该算法具有与UKF-CMA算法相当的跟踪能力和收敛速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信