Random Noise Boxes: Data Augmentation for Spectrograms

Maxime Goubeaud, Nicolla Gmyrek, Farzin Ghorban, Lucas Schelkes, A. Kummert
{"title":"Random Noise Boxes: Data Augmentation for Spectrograms","authors":"Maxime Goubeaud, Nicolla Gmyrek, Farzin Ghorban, Lucas Schelkes, A. Kummert","doi":"10.1109/PIC53636.2021.9687058","DOIUrl":null,"url":null,"abstract":"In machine learning, data augmentation is commonly used to generate synthetic samples in order to augment datasets used to train models. The motivation behind data augmentation is to reduce the error-rate of models by increasing the diversity in the dataset. In this paper, we present a new data augmentation method for spectrograms of time series that we name Random Noise Boxes. Random Noise Boxes works by multiplying each spectrogram in a dataset with a predefined number of identical spectrograms and thereafter replacing randomly chosen square-sized parts of the resulting spectrograms with boxes of random noise pixels. We demonstrate the effectiveness of the proposed method by conducting experiments using differentsized CNN classifiers evaluated on nine well-known datasets from the UCR Time Series Classification Archive. We show that our method is beneficial in most cases, as we observe an increase of accuracy and F1-Score on most datasets.","PeriodicalId":297239,"journal":{"name":"2021 IEEE International Conference on Progress in Informatics and Computing (PIC)","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Progress in Informatics and Computing (PIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PIC53636.2021.9687058","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In machine learning, data augmentation is commonly used to generate synthetic samples in order to augment datasets used to train models. The motivation behind data augmentation is to reduce the error-rate of models by increasing the diversity in the dataset. In this paper, we present a new data augmentation method for spectrograms of time series that we name Random Noise Boxes. Random Noise Boxes works by multiplying each spectrogram in a dataset with a predefined number of identical spectrograms and thereafter replacing randomly chosen square-sized parts of the resulting spectrograms with boxes of random noise pixels. We demonstrate the effectiveness of the proposed method by conducting experiments using differentsized CNN classifiers evaluated on nine well-known datasets from the UCR Time Series Classification Archive. We show that our method is beneficial in most cases, as we observe an increase of accuracy and F1-Score on most datasets.
随机噪声盒:频谱图的数据增强
在机器学习中,数据增强通常用于生成合成样本,以增强用于训练模型的数据集。数据增强背后的动机是通过增加数据集的多样性来降低模型的错误率。本文提出了一种新的时间序列谱图数据增强方法,我们称之为随机噪声盒。随机噪声盒的工作原理是将数据集中的每个频谱图与预定义数量的相同频谱图相乘,然后用随机噪声像素的盒子替换随机选择的方形大小的频谱图部分。我们通过使用不同大小的CNN分类器对来自UCR时间序列分类档案的9个知名数据集进行评估的实验来证明所提出方法的有效性。我们表明,我们的方法在大多数情况下是有益的,因为我们观察到大多数数据集的准确性和F1-Score都有所提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信