Songyuan Li, Kang Hu, Shibo He, Lingkun Fu, Jiming Chen
{"title":"RWC: A Robust Wireless Charging System for Dockless Bike-Sharing","authors":"Songyuan Li, Kang Hu, Shibo He, Lingkun Fu, Jiming Chen","doi":"10.1109/RFID-TA.2018.8552792","DOIUrl":null,"url":null,"abstract":"Bike-sharing, especially dockless bike-sharing, is making a sensational progress of public transportation recently. The implementation of smart locking/unlocking module for shared-bikes has produced the issue of how to charge those modules efficiently for shared-bikes. Existing shared-bike charging technologies rarely take charging delay or user experience into consideration. In this paper, we propose RWC, a robust wireless charging system for dockless bike-sharing, which can provide stable recharging service without decreasing bike-sharing system's service quality. RWC recharges shared-bikes via radio frequency (RF) energy harvesting. We design an RF wireless charging sensor node to integrate it on a bike's basket, such that the mutual interference during charging process and space occupation can be reduced. RWC also includes a charging direction scheduling algorithm to reduce charging delay. The RWC system has been successfully implemented on a dockless bike-sharing system, which proves its effectiveness.","PeriodicalId":293800,"journal":{"name":"2018 IEEE International Conference on RFID Technology & Application (RFID-TA)","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on RFID Technology & Application (RFID-TA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RFID-TA.2018.8552792","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Bike-sharing, especially dockless bike-sharing, is making a sensational progress of public transportation recently. The implementation of smart locking/unlocking module for shared-bikes has produced the issue of how to charge those modules efficiently for shared-bikes. Existing shared-bike charging technologies rarely take charging delay or user experience into consideration. In this paper, we propose RWC, a robust wireless charging system for dockless bike-sharing, which can provide stable recharging service without decreasing bike-sharing system's service quality. RWC recharges shared-bikes via radio frequency (RF) energy harvesting. We design an RF wireless charging sensor node to integrate it on a bike's basket, such that the mutual interference during charging process and space occupation can be reduced. RWC also includes a charging direction scheduling algorithm to reduce charging delay. The RWC system has been successfully implemented on a dockless bike-sharing system, which proves its effectiveness.