Numerical simulation of innovative device structures for silicon thin-film solar cells

U. Rau, T. Meyer, A. Goldbach, R. Brendel, J. H. Werner
{"title":"Numerical simulation of innovative device structures for silicon thin-film solar cells","authors":"U. Rau, T. Meyer, A. Goldbach, R. Brendel, J. H. Werner","doi":"10.1109/PVSC.1996.564045","DOIUrl":null,"url":null,"abstract":"We investigate the optical and electronic properties of thin-film silicon solar cells by means of numerical simulations. The optical design under investigation is the encapsulated-V texture which is capable of absorbing sunlight corresponding to a maximum short circuit current density of 35 mA/cm/sup 2/. Since the layer thickness can be restricted to only 4 /spl mu/m, the encapsulated-V structure provides also a good collection efficiency for photogenerated charge carriers. Practical efficiencies around 12% can be expected for Si material with a minority carrier lifetime as low as 10 ns. Increased lifetimes of 100 ns allow for about 14% efficiency. The benefit of multiple junctions strongly depends on surface recombination. The efficiency of a single junction cell can be improved from 10% to 13% by a three junction device if the surface recombination velocity is as high as 10/sup 5/ cm/s. For moderate surface recombination the gain is only 1%.","PeriodicalId":410394,"journal":{"name":"Conference Record of the Twenty Fifth IEEE Photovoltaic Specialists Conference - 1996","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference Record of the Twenty Fifth IEEE Photovoltaic Specialists Conference - 1996","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PVSC.1996.564045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

We investigate the optical and electronic properties of thin-film silicon solar cells by means of numerical simulations. The optical design under investigation is the encapsulated-V texture which is capable of absorbing sunlight corresponding to a maximum short circuit current density of 35 mA/cm/sup 2/. Since the layer thickness can be restricted to only 4 /spl mu/m, the encapsulated-V structure provides also a good collection efficiency for photogenerated charge carriers. Practical efficiencies around 12% can be expected for Si material with a minority carrier lifetime as low as 10 ns. Increased lifetimes of 100 ns allow for about 14% efficiency. The benefit of multiple junctions strongly depends on surface recombination. The efficiency of a single junction cell can be improved from 10% to 13% by a three junction device if the surface recombination velocity is as high as 10/sup 5/ cm/s. For moderate surface recombination the gain is only 1%.
硅薄膜太阳能电池创新器件结构的数值模拟
采用数值模拟的方法研究了薄膜硅太阳能电池的光学和电子特性。所研究的光学设计是封装v结构,能够吸收最大短路电流密度为35 mA/cm/sup 2/的阳光。由于层厚度可以限制在仅4 /spl mu/m,封装v结构也为光生电荷载流子提供了良好的收集效率。硅材料的实际效率约为12%,少数载流子寿命低至10ns。增加100毫纳秒的寿命允许大约14%的效率。多结的好处很大程度上取决于表面复合。当表面复合速度达到10/sup / 5/ cm/s时,采用三结装置可将单结电池的效率从10%提高到13%。对于适度的表面复合,增益仅为1%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信