Click-graph modeling for facet attribute estimation of web search queries

Sumio Fujita, Keigo Machinaga, G. Dupret
{"title":"Click-graph modeling for facet attribute estimation of web search queries","authors":"Sumio Fujita, Keigo Machinaga, G. Dupret","doi":"10.5555/1937055.1937103","DOIUrl":null,"url":null,"abstract":"We use clickthrough data of a Japanese commercial search engine to evaluate the similarity between a query and a facet category from the patterns of clicks on URLs. Using a small number of seed queries, we extract a set of topical words forming search queries together with the same facet directive words, e.g., 'recipe' in 'curry recipe' or 'apple pie recipe'. We used a PageRank-like random walk approach on query-URL bipartite graphs called \"Biased ClickRank\" to propagate facet attributes through click bipartite graphs. We noticed that queries to URL links are too sparse to capture query variations whereas queries to domain links are too coarse to discriminate among the different usages of broadly related queries. We introduced edges and vertices corresponding to the decomposed URL paths into the click graph to capture the click pattern differences at an appropriate granularity level. Our expanded graph model improved recalls as well as average precision against baseline graph models.","PeriodicalId":120472,"journal":{"name":"RIAO Conference","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RIAO Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5555/1937055.1937103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

We use clickthrough data of a Japanese commercial search engine to evaluate the similarity between a query and a facet category from the patterns of clicks on URLs. Using a small number of seed queries, we extract a set of topical words forming search queries together with the same facet directive words, e.g., 'recipe' in 'curry recipe' or 'apple pie recipe'. We used a PageRank-like random walk approach on query-URL bipartite graphs called "Biased ClickRank" to propagate facet attributes through click bipartite graphs. We noticed that queries to URL links are too sparse to capture query variations whereas queries to domain links are too coarse to discriminate among the different usages of broadly related queries. We introduced edges and vertices corresponding to the decomposed URL paths into the click graph to capture the click pattern differences at an appropriate granularity level. Our expanded graph model improved recalls as well as average precision against baseline graph models.
网页搜索查询面属性估计的点击图建模
我们使用日本商业搜索引擎的点击数据,根据url上的点击模式来评估查询和facet类别之间的相似性。使用少量的种子查询,我们提取了一组主题词,这些主题词与相同的facet指令词一起构成搜索查询,例如,“咖喱食谱”或“苹果派食谱”中的“食谱”。我们在查询- url二部图上使用了一种类似pagerank的随机游走方法,称为“Biased ClickRank”,通过点击二部图传播facet属性。我们注意到,对URL链接的查询过于稀疏,无法捕获查询变化,而对域链接的查询过于粗糙,无法区分广泛相关查询的不同用法。我们在点击图中引入了与分解的URL路径相对应的边和顶点,以便在适当的粒度级别上捕获点击模式的差异。我们的扩展图模型提高了召回率以及相对于基线图模型的平均精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信