A Closed Loop Gradient Descent Algorithm applied to Rosenbrock’s function

Subhransu S. Bhattacharjee, I. Petersen
{"title":"A Closed Loop Gradient Descent Algorithm applied to Rosenbrock’s function","authors":"Subhransu S. Bhattacharjee, I. Petersen","doi":"10.1109/ANZCC53563.2021.9628258","DOIUrl":null,"url":null,"abstract":"We introduce a novel adaptive damping technique for an inertial gradient system which finds application as a gradient descent algorithm for unconstrained optimisation. In an example using the non-convex Rosenbrock’s function, we show an improvement on existing momentum-based gradient optimisation methods. Also using Lyapunov stability analysis, we demonstrate the performance of the continuous-time version of the algorithm. Using numerical simulations, we consider the performance of its discrete-time counterpart obtained by using the symplectic Euler method of discretisation.","PeriodicalId":246687,"journal":{"name":"2021 Australian & New Zealand Control Conference (ANZCC)","volume":"117 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Australian & New Zealand Control Conference (ANZCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ANZCC53563.2021.9628258","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

We introduce a novel adaptive damping technique for an inertial gradient system which finds application as a gradient descent algorithm for unconstrained optimisation. In an example using the non-convex Rosenbrock’s function, we show an improvement on existing momentum-based gradient optimisation methods. Also using Lyapunov stability analysis, we demonstrate the performance of the continuous-time version of the algorithm. Using numerical simulations, we consider the performance of its discrete-time counterpart obtained by using the symplectic Euler method of discretisation.
应用于Rosenbrock函数的闭环梯度下降算法
我们介绍了一种新的惯性梯度系统的自适应阻尼技术,该技术可以作为无约束优化的梯度下降算法。在一个使用非凸Rosenbrock函数的例子中,我们展示了对现有基于动量的梯度优化方法的改进。同时利用李雅普诺夫稳定性分析,我们证明了该算法的连续时间版本的性能。通过数值模拟,我们考虑了用辛欧拉离散化方法得到的离散时间对应体的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信