Multivariate Time-Series Prediction for Traffic in Large WAN Topology

Bashir Mohammed, Nandini Krishnaswamy, M. Kiran
{"title":"Multivariate Time-Series Prediction for Traffic in Large WAN Topology","authors":"Bashir Mohammed, Nandini Krishnaswamy, M. Kiran","doi":"10.1109/ANCS.2019.8901870","DOIUrl":null,"url":null,"abstract":"Network traffic behavior is noisy and random, making it difficult to find patterns and predict future behavior. In this paper, we develop statistical models that use multivariate data model, incorporating seasonality, peak frequencies, and link relationships to improve future predictions. Using Fourier Transforms to extract seasons and peak frequencies from individual traces, we perform seasonality tests and ARIMA measures to determine optimal parameters to use in our prediction model. We develop a SARIMA multivariate model using real network traces to show improved prediction accuracy with better RMSE and smaller confidence intervals when compared to univariate approaches.","PeriodicalId":405320,"journal":{"name":"2019 ACM/IEEE Symposium on Architectures for Networking and Communications Systems (ANCS)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 ACM/IEEE Symposium on Architectures for Networking and Communications Systems (ANCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ANCS.2019.8901870","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Network traffic behavior is noisy and random, making it difficult to find patterns and predict future behavior. In this paper, we develop statistical models that use multivariate data model, incorporating seasonality, peak frequencies, and link relationships to improve future predictions. Using Fourier Transforms to extract seasons and peak frequencies from individual traces, we perform seasonality tests and ARIMA measures to determine optimal parameters to use in our prediction model. We develop a SARIMA multivariate model using real network traces to show improved prediction accuracy with better RMSE and smaller confidence intervals when compared to univariate approaches.
大型广域网拓扑中流量的多变量时间序列预测
网络流量行为是嘈杂和随机的,很难发现模式并预测未来的行为。在本文中,我们开发了使用多变量数据模型的统计模型,包括季节性、峰值频率和链接关系,以改进未来的预测。使用傅里叶变换从单个轨迹中提取季节和峰值频率,我们执行季节性测试和ARIMA测量,以确定在预测模型中使用的最佳参数。与单变量方法相比,我们开发了一个使用真实网络轨迹的SARIMA多变量模型,以更好的RMSE和更小的置信区间来提高预测精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信