Maximum Entropy Image Reconstruction from Phaseless Fourier Data

R. Bryan, J. Skilling
{"title":"Maximum Entropy Image Reconstruction from Phaseless Fourier Data","authors":"R. Bryan, J. Skilling","doi":"10.1080/713821934","DOIUrl":null,"url":null,"abstract":"We investigate the reconstruction of a real and positive spatial pattern or \"image\" (1) from incomplete phaseless Fourier data Dkwith noise σk, (2) The first step is to define the set of \"feasible\" images, any of which is consistent with the data. This involves comparing the actualdata Dkwith the simulated data |Fk|2which wouldbe observed (apart from noise) from a trial image f. The simplest comparison measure is chisquared (3) Any trial image f for which \nχ2>M+3⋅3M (M = number of data) is rejected with 99% confidence: the surviving images are feasible and only these need be considered further. In N-dimensional image-space, the feasible set forms a 2M-dimensional toroid, projected linearly to infinity in any unmeasured Fourier planes. Much of the difficulty encountered with phaseless data stems from the connected topology of this constraint.","PeriodicalId":279385,"journal":{"name":"Topical Meeting on Signal Recovery and Synthesis with Incomplete Information and Partial Constraints","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1986-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topical Meeting on Signal Recovery and Synthesis with Incomplete Information and Partial Constraints","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/713821934","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

We investigate the reconstruction of a real and positive spatial pattern or "image" (1) from incomplete phaseless Fourier data Dkwith noise σk, (2) The first step is to define the set of "feasible" images, any of which is consistent with the data. This involves comparing the actualdata Dkwith the simulated data |Fk|2which wouldbe observed (apart from noise) from a trial image f. The simplest comparison measure is chisquared (3) Any trial image f for which χ2>M+3⋅3M (M = number of data) is rejected with 99% confidence: the surviving images are feasible and only these need be considered further. In N-dimensional image-space, the feasible set forms a 2M-dimensional toroid, projected linearly to infinity in any unmeasured Fourier planes. Much of the difficulty encountered with phaseless data stems from the connected topology of this constraint.
基于无相傅里叶数据的最大熵图像重建
我们研究了从不完全无相傅里叶数据dk中重建一个真实的和正的空间模式或“图像”(1),并带有噪声σk,(2)第一步是定义“可行”图像集,其中任何一个图像与数据一致。这涉及将实际数据dk与模拟数据|Fk|进行比较,这些数据将从试验图像f中观察到(除噪声外)。最简单的比较措施是chisquared(3)任何具有χ2>M+3⋅3M (M =数据数)的试验图像f以99%的置信度被拒绝:幸存的图像是可行的,只有这些图像需要进一步考虑。在n维图像空间中,可行集形成一个2m维的环面,在任何未测量的傅里叶平面上线性投影到无穷远。无相数据遇到的许多困难源于此约束的连接拓扑。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信