Modeling dynamic patterns from COVID-19 data using randomized dynamic mode decomposition in predictive mode and ARIMA

D. Bistrian, G. Dimitriu, Ionel M. Navon
{"title":"Modeling dynamic patterns from COVID-19 data using randomized dynamic mode decomposition in predictive mode and ARIMA","authors":"D. Bistrian, G. Dimitriu, Ionel M. Navon","doi":"10.1063/5.0033963","DOIUrl":null,"url":null,"abstract":"The aim of this paper is to gain a deeper understanding of the new Corona virus (Covid-19) dynamics directly from the raw data reported by World Health Organization. We provide a high fidelity mathematical model, fast and computationally inexpensive for modeling the evolution of the pandemic worldwide and we develop an effcient tool for medium term prediction of pandemic dynamics, including infection spreading. We illustrate the excellent behavior of the non-intrusive reduced order model by performing a qualitative analysis.","PeriodicalId":156284,"journal":{"name":"APPLICATION OF MATHEMATICS IN TECHNICAL AND NATURAL SCIENCES: 12th International On-line Conference for Promoting the Application of Mathematics in Technical and Natural Sciences - AMiTaNS’20","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"APPLICATION OF MATHEMATICS IN TECHNICAL AND NATURAL SCIENCES: 12th International On-line Conference for Promoting the Application of Mathematics in Technical and Natural Sciences - AMiTaNS’20","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0033963","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

The aim of this paper is to gain a deeper understanding of the new Corona virus (Covid-19) dynamics directly from the raw data reported by World Health Organization. We provide a high fidelity mathematical model, fast and computationally inexpensive for modeling the evolution of the pandemic worldwide and we develop an effcient tool for medium term prediction of pandemic dynamics, including infection spreading. We illustrate the excellent behavior of the non-intrusive reduced order model by performing a qualitative analysis.
基于预测模式随机动态模式分解和ARIMA的COVID-19数据动态模式建模
本文的目的是直接从世界卫生组织报告的原始数据中深入了解新型冠状病毒(Covid-19)的动态。我们提供了一个高保真的数学模型,快速且计算成本低廉,用于模拟全球大流行的演变,我们开发了一个有效的工具,用于大流行动态的中期预测,包括感染传播。我们通过进行定性分析来说明非侵入性降阶模型的优良性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信