{"title":"An optimization algorithm to expand the reduced workspace with fixed-joint method for redundant manipulator","authors":"Youdong Chen, Yu Chen, Jiaxin Guo","doi":"10.1109/ARSO.2016.7736267","DOIUrl":null,"url":null,"abstract":"In this paper, an optimization algorithm is proposed to settle the deficiency of fixed-joint method. The fixed-joint method leads to a reduced workspace which has some inaccessible points due to a special joint fixed. Since different fixed joint has different reduced workspace, we develop a method to make these workspaces mutual complementation. Manipulability is used to select the appropriate joint angle to be fixed in order to satisfy the given posture. By comparing 7-dof manipulator's real-time inverse kinematic solutions, we put forward detailed analysis of the workspace of the end-effector with different fixed joint angles. The kinematics simulation is implemented to verify the correctness of this method.","PeriodicalId":403924,"journal":{"name":"2016 IEEE Workshop on Advanced Robotics and its Social Impacts (ARSO)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Workshop on Advanced Robotics and its Social Impacts (ARSO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ARSO.2016.7736267","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
In this paper, an optimization algorithm is proposed to settle the deficiency of fixed-joint method. The fixed-joint method leads to a reduced workspace which has some inaccessible points due to a special joint fixed. Since different fixed joint has different reduced workspace, we develop a method to make these workspaces mutual complementation. Manipulability is used to select the appropriate joint angle to be fixed in order to satisfy the given posture. By comparing 7-dof manipulator's real-time inverse kinematic solutions, we put forward detailed analysis of the workspace of the end-effector with different fixed joint angles. The kinematics simulation is implemented to verify the correctness of this method.