Novel email spam detection method using sentiment analysis and personality recognition

Log. J. IGPL Pub Date : 2020-01-24 DOI:10.1093/jigpal/jzz073
Enaitz Ezpeleta, Iñaki Vélez de Mendizabal, J. M. G. Hidalgo, Urko Zurutuza
{"title":"Novel email spam detection method using sentiment analysis and personality recognition","authors":"Enaitz Ezpeleta, Iñaki Vélez de Mendizabal, J. M. G. Hidalgo, Urko Zurutuza","doi":"10.1093/jigpal/jzz073","DOIUrl":null,"url":null,"abstract":"Unsolicited email campaigns remain as one of the biggest threats affecting millions of users per day. During the past years several techniques to detect unsolicited emails have been developed. This work provides means to validate the hypothesis that the identification of the email messages’ intention can be approached by sentiment analysis and personality recognition techniques. These techniques will provide new features that improve current spam classification techniques. We combine personality recognition and sentiment analysis techniques to analyse email content. We enrich a publicly available dataset adding these features, first separately and after in combination, of each message to the dataset, creating new datasets. We apply several combinations of the best email spam classifiers and filters to each dataset in order to compare results.","PeriodicalId":304915,"journal":{"name":"Log. J. IGPL","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Log. J. IGPL","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/jigpal/jzz073","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Unsolicited email campaigns remain as one of the biggest threats affecting millions of users per day. During the past years several techniques to detect unsolicited emails have been developed. This work provides means to validate the hypothesis that the identification of the email messages’ intention can be approached by sentiment analysis and personality recognition techniques. These techniques will provide new features that improve current spam classification techniques. We combine personality recognition and sentiment analysis techniques to analyse email content. We enrich a publicly available dataset adding these features, first separately and after in combination, of each message to the dataset, creating new datasets. We apply several combinations of the best email spam classifiers and filters to each dataset in order to compare results.
基于情感分析和人格识别的垃圾邮件检测新方法
未经请求的电子邮件活动仍然是每天影响数百万用户的最大威胁之一。在过去的几年中,已经开发了几种检测未经请求的电子邮件的技术。这项工作提供了验证假设的手段,即可以通过情感分析和人格识别技术来识别电子邮件信息的意图。这些技术将提供改进当前垃圾邮件分类技术的新特性。我们结合个性识别和情感分析技术来分析电子邮件内容。我们丰富了一个公开可用的数据集,首先分别添加这些特征,然后将每个消息组合到数据集,创建新的数据集。我们对每个数据集应用了几种最佳垃圾邮件分类器和过滤器的组合,以便比较结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信