Detection of Shapes in 2D Point Clouds Generated from Images

Jingyong Su, Zhiqiang Zhu, Anuj Srivastava, F. Huffer
{"title":"Detection of Shapes in 2D Point Clouds Generated from Images","authors":"Jingyong Su, Zhiqiang Zhu, Anuj Srivastava, F. Huffer","doi":"10.1109/ICPR.2010.647","DOIUrl":null,"url":null,"abstract":"We present a novel statistical framework for detecting pre-determined shape classes in 2D cluttered point clouds, which are in turn extracted from images. In this model based approach, we use a 1D Poisson process for sampling points on shapes, a 2D Poisson process for points from background clutter, and an additive Gaussian model for noise. Combining these with a past stochastic model on shapes of continuous 2D contours, and optimization over unknown pose and scale, we develop a generalized likelihood ratio test for shape detection. We demonstrate the efficiency of this method and its robustness to clutter using both simulated and real data.","PeriodicalId":309591,"journal":{"name":"2010 20th International Conference on Pattern Recognition","volume":"81 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 20th International Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR.2010.647","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We present a novel statistical framework for detecting pre-determined shape classes in 2D cluttered point clouds, which are in turn extracted from images. In this model based approach, we use a 1D Poisson process for sampling points on shapes, a 2D Poisson process for points from background clutter, and an additive Gaussian model for noise. Combining these with a past stochastic model on shapes of continuous 2D contours, and optimization over unknown pose and scale, we develop a generalized likelihood ratio test for shape detection. We demonstrate the efficiency of this method and its robustness to clutter using both simulated and real data.
由图像生成的二维点云的形状检测
我们提出了一种新的统计框架,用于检测从图像中提取的二维杂乱点云中预先确定的形状类。在这种基于模型的方法中,我们使用一维泊松过程对形状上的点进行采样,使用二维泊松过程对背景杂波中的点进行采样,并使用加性高斯模型对噪声进行采样。结合过去连续二维轮廓形状的随机模型,以及未知姿态和比例的优化,我们开发了一种用于形状检测的广义似然比检验。通过仿真和实际数据验证了该方法的有效性和对杂波的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信