{"title":"Tervel: A unification of descriptor-based techniques for non-blocking programming","authors":"S. Feldman, P. Laborde, D. Dechev","doi":"10.1109/SAMOS.2015.7363668","DOIUrl":null,"url":null,"abstract":"The development of non-blocking code is difficult; developers must ensure the progress of an operation on shared memory despite conflicting operations. Managing this shared memory in a non-blocking fashion is even more problematic. The non-blocking property guarantees that progress is made toward the desired operation in a finite amount of time. We present a framework that implements memory reclamation and progress assurance for code that follows the semantics of our framework. This reduces the effort required to implement non-blocking, and more specifically wait-free, algorithms. We also present a library that demonstrates the ease with which wait-free algorithms can be implemented using our framework.","PeriodicalId":346802,"journal":{"name":"2015 International Conference on Embedded Computer Systems: Architectures, Modeling, and Simulation (SAMOS)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Embedded Computer Systems: Architectures, Modeling, and Simulation (SAMOS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAMOS.2015.7363668","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14
Abstract
The development of non-blocking code is difficult; developers must ensure the progress of an operation on shared memory despite conflicting operations. Managing this shared memory in a non-blocking fashion is even more problematic. The non-blocking property guarantees that progress is made toward the desired operation in a finite amount of time. We present a framework that implements memory reclamation and progress assurance for code that follows the semantics of our framework. This reduces the effort required to implement non-blocking, and more specifically wait-free, algorithms. We also present a library that demonstrates the ease with which wait-free algorithms can be implemented using our framework.