E. Arias-de-Reyna, D. Dardari, P. Closas, P. Djurić
{"title":"Estimation Of Spatial Fields Of Nlos/Los Conditions For Improved Localization In Indoor Environments","authors":"E. Arias-de-Reyna, D. Dardari, P. Closas, P. Djurić","doi":"10.1109/SSP.2018.8450840","DOIUrl":null,"url":null,"abstract":"A major challenge in indoor localization is the presence or absence of line-of-sight (LOS). The absence of LOS, denoted as non-line-of-sight (NLOS), directly affects the accuracy of any localization algorithm because of the induced bias in ranging. The estimation of the spatial distribution of NLOS-induced ranging bias in indoor environments remains a major challenge. In this paper, we propose a novel crowd-based Bayesian learning approach to the estimation of bias fields caused by LOS/NLOS conditions. The proposed method is based on the concept of Gaussian processes and exploits numerous measurements. The performance of the method is demonstrated with extensive experiments.","PeriodicalId":330528,"journal":{"name":"2018 IEEE Statistical Signal Processing Workshop (SSP)","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Statistical Signal Processing Workshop (SSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSP.2018.8450840","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
A major challenge in indoor localization is the presence or absence of line-of-sight (LOS). The absence of LOS, denoted as non-line-of-sight (NLOS), directly affects the accuracy of any localization algorithm because of the induced bias in ranging. The estimation of the spatial distribution of NLOS-induced ranging bias in indoor environments remains a major challenge. In this paper, we propose a novel crowd-based Bayesian learning approach to the estimation of bias fields caused by LOS/NLOS conditions. The proposed method is based on the concept of Gaussian processes and exploits numerous measurements. The performance of the method is demonstrated with extensive experiments.