Estimation Of Spatial Fields Of Nlos/Los Conditions For Improved Localization In Indoor Environments

E. Arias-de-Reyna, D. Dardari, P. Closas, P. Djurić
{"title":"Estimation Of Spatial Fields Of Nlos/Los Conditions For Improved Localization In Indoor Environments","authors":"E. Arias-de-Reyna, D. Dardari, P. Closas, P. Djurić","doi":"10.1109/SSP.2018.8450840","DOIUrl":null,"url":null,"abstract":"A major challenge in indoor localization is the presence or absence of line-of-sight (LOS). The absence of LOS, denoted as non-line-of-sight (NLOS), directly affects the accuracy of any localization algorithm because of the induced bias in ranging. The estimation of the spatial distribution of NLOS-induced ranging bias in indoor environments remains a major challenge. In this paper, we propose a novel crowd-based Bayesian learning approach to the estimation of bias fields caused by LOS/NLOS conditions. The proposed method is based on the concept of Gaussian processes and exploits numerous measurements. The performance of the method is demonstrated with extensive experiments.","PeriodicalId":330528,"journal":{"name":"2018 IEEE Statistical Signal Processing Workshop (SSP)","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Statistical Signal Processing Workshop (SSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSP.2018.8450840","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

A major challenge in indoor localization is the presence or absence of line-of-sight (LOS). The absence of LOS, denoted as non-line-of-sight (NLOS), directly affects the accuracy of any localization algorithm because of the induced bias in ranging. The estimation of the spatial distribution of NLOS-induced ranging bias in indoor environments remains a major challenge. In this paper, we propose a novel crowd-based Bayesian learning approach to the estimation of bias fields caused by LOS/NLOS conditions. The proposed method is based on the concept of Gaussian processes and exploits numerous measurements. The performance of the method is demonstrated with extensive experiments.
基于Nlos/Los条件的空间场估计改进室内环境定位
室内定位的一个主要挑战是是否存在视线(LOS)。缺乏视距(non-line-of-sight, NLOS)直接影响任何定位算法的精度,因为测距过程中会产生偏差。在室内环境中,nlos诱导的测距偏差的空间分布估计仍然是一个主要的挑战。在本文中,我们提出了一种新的基于人群的贝叶斯学习方法来估计由LOS/NLOS条件引起的偏置场。提出的方法是基于高斯过程的概念,并利用大量的测量。通过大量的实验验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信