WISE

Serif Yesil, Azin Heidarshenas, Adam Morrison, J. Torrellas
{"title":"WISE","authors":"Serif Yesil, Azin Heidarshenas, Adam Morrison, J. Torrellas","doi":"10.1145/3572848.3577506","DOIUrl":null,"url":null,"abstract":"Sparse Matrix-Vector Multiplication (SpMV) is an essential sparse kernel. Numerous methods have been developed to accelerate SpMV. However, no single method consistently gives the highest performance across a wide range of matrices. For this reason, a performance prediction model is needed to predict the best SpMV method for a given sparse matrix. Unfortunately, predicting SpMV's performance is challenging due to the diversity of factors that impact it. In this work, we develop a machine learning framework called WISE that accurately predicts the magnitude of the speedups of different SpMV methods over a baseline method for a given sparse matrix. WISE relies on a novel feature set that summarizes a matrix's size, skew, and locality traits. WISE can then select the best SpMV method for each specific matrix. With a set of nearly 1,500 matrices, we show that using WISE delivers an average speedup of 2.4× over using Intel's MKL in a 24-core server.","PeriodicalId":233744,"journal":{"name":"Proceedings of the 28th ACM SIGPLAN Annual Symposium on Principles and Practice of Parallel Programming","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 28th ACM SIGPLAN Annual Symposium on Principles and Practice of Parallel Programming","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3572848.3577506","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Sparse Matrix-Vector Multiplication (SpMV) is an essential sparse kernel. Numerous methods have been developed to accelerate SpMV. However, no single method consistently gives the highest performance across a wide range of matrices. For this reason, a performance prediction model is needed to predict the best SpMV method for a given sparse matrix. Unfortunately, predicting SpMV's performance is challenging due to the diversity of factors that impact it. In this work, we develop a machine learning framework called WISE that accurately predicts the magnitude of the speedups of different SpMV methods over a baseline method for a given sparse matrix. WISE relies on a novel feature set that summarizes a matrix's size, skew, and locality traits. WISE can then select the best SpMV method for each specific matrix. With a set of nearly 1,500 matrices, we show that using WISE delivers an average speedup of 2.4× over using Intel's MKL in a 24-core server.
明智的
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信