Performance metric in closed-loop sensor management for stochastic populations

E. Delande, J. Houssineau, Daniel E. Clark
{"title":"Performance metric in closed-loop sensor management for stochastic populations","authors":"E. Delande, J. Houssineau, Daniel E. Clark","doi":"10.1109/SSPD.2014.6943322","DOIUrl":null,"url":null,"abstract":"Methods for sensor control are crucial for modern surveillance and sensing systems to enable efficient allocation and prioritisation of resources. The framework of partially observed Markov decision processes enables decisions to be made based on data received by the sensors within an information-theoretic context. This work addresses the problem of closed-loop sensor management in a multi-target surveillance context where each target is assumed to move independently of other targets. Analytic expressions of the information gain are obtained, for a class of exact multi-target tracking filters are obtained and based on the Rényi divergence. The proposed method is sufficiently general to address a broad range of sensor management problems through the application-specific reward function defined by the operator.","PeriodicalId":133530,"journal":{"name":"2014 Sensor Signal Processing for Defence (SSPD)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 Sensor Signal Processing for Defence (SSPD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSPD.2014.6943322","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Methods for sensor control are crucial for modern surveillance and sensing systems to enable efficient allocation and prioritisation of resources. The framework of partially observed Markov decision processes enables decisions to be made based on data received by the sensors within an information-theoretic context. This work addresses the problem of closed-loop sensor management in a multi-target surveillance context where each target is assumed to move independently of other targets. Analytic expressions of the information gain are obtained, for a class of exact multi-target tracking filters are obtained and based on the Rényi divergence. The proposed method is sufficiently general to address a broad range of sensor management problems through the application-specific reward function defined by the operator.
随机种群闭环传感器管理中的性能度量
传感器控制方法对于现代监测和传感系统至关重要,以实现资源的有效分配和优先排序。部分观察马尔可夫决策过程的框架使决策能够根据传感器在信息论环境中接收到的数据做出。这项工作解决了多目标监视环境中的闭环传感器管理问题,其中每个目标都被假设独立于其他目标移动。得到了一类精确多目标跟踪滤波器的信息增益解析表达式,该滤波器是基于rsamunyi散度的。所提出的方法具有足够的通用性,可以通过操作员定义的特定应用奖励函数来解决广泛的传感器管理问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信