Illusory contour detection using MRF models

S. Madarasmi, T. Pong, D. Kersten
{"title":"Illusory contour detection using MRF models","authors":"S. Madarasmi, T. Pong, D. Kersten","doi":"10.1109/ICNN.1994.374966","DOIUrl":null,"url":null,"abstract":"This paper presents a computational model for obtaining relative depth information from image contours. Local occlusion properties such as T-junctions and concavity are used to arrive at a global percept of distinct surfaces at various relative depths. A multilayer representation is used to classify each image pixel into the appropriate depth plane based on the local information from the occluding contours. A Bayesian framework is used to incorporate the constraints defined by the contours and the prior constraints. A solution corresponding to the maximum posteriori probability is then determined, resulting in a depth assignment and surface assignment for each image site or pixel. The algorithm was tested on various contour images, including two classes of illusory surfaces: the Kanizsa (1979) and the line termination illusory contours.<<ETX>>","PeriodicalId":209128,"journal":{"name":"Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNN.1994.374966","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

This paper presents a computational model for obtaining relative depth information from image contours. Local occlusion properties such as T-junctions and concavity are used to arrive at a global percept of distinct surfaces at various relative depths. A multilayer representation is used to classify each image pixel into the appropriate depth plane based on the local information from the occluding contours. A Bayesian framework is used to incorporate the constraints defined by the contours and the prior constraints. A solution corresponding to the maximum posteriori probability is then determined, resulting in a depth assignment and surface assignment for each image site or pixel. The algorithm was tested on various contour images, including two classes of illusory surfaces: the Kanizsa (1979) and the line termination illusory contours.<>
磁共振成像模型的虚幻轮廓检测
本文提出了一种从图像轮廓中获取相对深度信息的计算模型。局部遮挡特性,如t结点和凹性,用于在不同的相对深度到达不同表面的全局感知。基于遮挡轮廓的局部信息,采用多层表示将每个图像像素划分到合适的深度平面。使用贝叶斯框架将轮廓定义的约束和先验约束结合起来。然后确定对应于最大后验概率的解决方案,从而为每个图像站点或像素进行深度分配和表面分配。该算法在各种轮廓图像上进行了测试,包括两类虚幻表面:Kanizsa(1979)和线终止虚幻轮廓。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信