Two-Stage License Plate Detection Using Gentle Adaboost and SIFT-SVM

W. T. Ho, Hao Wooi Lim, Yong Haur Tay
{"title":"Two-Stage License Plate Detection Using Gentle Adaboost and SIFT-SVM","authors":"W. T. Ho, Hao Wooi Lim, Yong Haur Tay","doi":"10.1109/ACIIDS.2009.25","DOIUrl":null,"url":null,"abstract":"This paper presents a two-stage method to detect license plates in real world images. To do license plate detection (LPD), an initial set of possible license plate character regions are first obtained by the first stage classifier and then passed to the second stage classifier to reject non-character regions. 36 Adaboost classifiers (each trained with one alpha-numerical character, i.e. A..Z, 0..9) serve as the first stage classifier. In the second stage, a support vector machine (SVM) trained on scale-invariant feature transform (SIFT) descriptors obtained from training sub-windows were employed. A recall rate of 0.920792 and precision rate of 0.90185 was obtained.","PeriodicalId":275776,"journal":{"name":"2009 First Asian Conference on Intelligent Information and Database Systems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"59","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 First Asian Conference on Intelligent Information and Database Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACIIDS.2009.25","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 59

Abstract

This paper presents a two-stage method to detect license plates in real world images. To do license plate detection (LPD), an initial set of possible license plate character regions are first obtained by the first stage classifier and then passed to the second stage classifier to reject non-character regions. 36 Adaboost classifiers (each trained with one alpha-numerical character, i.e. A..Z, 0..9) serve as the first stage classifier. In the second stage, a support vector machine (SVM) trained on scale-invariant feature transform (SIFT) descriptors obtained from training sub-windows were employed. A recall rate of 0.920792 and precision rate of 0.90185 was obtained.
基于温和Adaboost和SIFT-SVM的两阶段车牌检测
本文提出了一种两阶段车牌检测方法。车牌检测(LPD)首先由第一阶段分类器获得一组可能的车牌字符区域,然后传递给第二阶段分类器来拒绝非字符区域。36个Adaboost分类器(每个分类器使用一个字母数字字符进行训练,即A…Z, 0…9)作为第一阶段分类器。在第二阶段,使用支持向量机(SVM)对从训练子窗口获得的尺度不变特征变换(SIFT)描述子进行训练。召回率为0.920792,准确率为0.90185。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信