The Orbit Equivalence Theorem

R. Schwartz
{"title":"The Orbit Equivalence Theorem","authors":"R. Schwartz","doi":"10.2307/j.ctv5rf6tz.21","DOIUrl":null,"url":null,"abstract":"This chapter begins Part 4 of the monograph. The goal of this part is to prove the Orbit Equivalence Theorem and the Quasi-Isomorphism Theorem. Theorem 17.1 (Orbit Equivalence) states that there is a dynamically large subset Z ⊂ X and a map Ω‎: Z → Y. Section 17.2 defines Z. Section 17.3 defines Ω‎. Section 17.4 characterizes the image Ω‎(Z). Section 17.5 defines a partition of Z into small convex polytopes which have the property that all the maps in Equations 17.1 and 1 are entirely defined and projective on each polytope. This allows us to verify the properties in the Orbit Equivalence Theorem just by checking what the two relevant maps do to the vertices of the new partition. Section 17.6 puts everything together and prove the Orbit Equivalence Theorem modulo some integer computer calculations. Section 17.7 discusses the computational techniques used to carry out the calculations from Section 17.6. Section 17.8 explains the calculations.","PeriodicalId":205299,"journal":{"name":"The Plaid Model","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Plaid Model","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2307/j.ctv5rf6tz.21","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This chapter begins Part 4 of the monograph. The goal of this part is to prove the Orbit Equivalence Theorem and the Quasi-Isomorphism Theorem. Theorem 17.1 (Orbit Equivalence) states that there is a dynamically large subset Z ⊂ X and a map Ω‎: Z → Y. Section 17.2 defines Z. Section 17.3 defines Ω‎. Section 17.4 characterizes the image Ω‎(Z). Section 17.5 defines a partition of Z into small convex polytopes which have the property that all the maps in Equations 17.1 and 1 are entirely defined and projective on each polytope. This allows us to verify the properties in the Orbit Equivalence Theorem just by checking what the two relevant maps do to the vertices of the new partition. Section 17.6 puts everything together and prove the Orbit Equivalence Theorem modulo some integer computer calculations. Section 17.7 discusses the computational techniques used to carry out the calculations from Section 17.6. Section 17.8 explains the calculations.
轨道等价定理
本章开始了专著的第4部分。这一部分的目的是证明轨道等价定理和拟同构定理。定理17.1(轨道等价)指出存在一个动态大子集Z≠X和一个映射Ω: Z→y。章节17.2定义了Z。章节17.3定义了Ω。第17.4节描述了图像Ω (Z)。第17.5节定义了Z的一个划分为小凸多面体,其性质是方程17.1和1中的所有映射在每个多面体上都是完全定义和投影的。这允许我们通过检查两个相关映射对新分区顶点的作用来验证轨道等价定理中的属性。第17.6节将所有内容放在一起,并证明轨道等价定理对某些整数计算机计算的模。第17.7节讨论用于执行第17.6节中的计算的计算技术。第17.8节解释了计算过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信