Large-scale multimedia data mining using MapReduce framework

Hanli Wang, Yun Shen, Lei Wang, Kuangtian Zhufeng, Wei Wang, Cheng Cheng
{"title":"Large-scale multimedia data mining using MapReduce framework","authors":"Hanli Wang, Yun Shen, Lei Wang, Kuangtian Zhufeng, Wei Wang, Cheng Cheng","doi":"10.1109/CloudCom.2012.6427595","DOIUrl":null,"url":null,"abstract":"In this paper, the framework of MapReduce is explored for large-scale multimedia data mining. Firstly, a brief overview of MapReduce and Hadoop is presented to speed up large-scale multimedia data mining. Then, the high-level theory and low-level implementation for several key computer vision technologies involved in this work are introduced, such as 2D/3D interest point detection, clustering, bag of features, and so on. Experimental results on image classification, video event detection and near-duplicate video retrieval are carried out on a five-node Hadoop cluster to demonstrate the efficiency of the proposed MapReduce framework for large-scale multimedia data mining applications.","PeriodicalId":430883,"journal":{"name":"4th IEEE International Conference on Cloud Computing Technology and Science Proceedings","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"4th IEEE International Conference on Cloud Computing Technology and Science Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CloudCom.2012.6427595","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

Abstract

In this paper, the framework of MapReduce is explored for large-scale multimedia data mining. Firstly, a brief overview of MapReduce and Hadoop is presented to speed up large-scale multimedia data mining. Then, the high-level theory and low-level implementation for several key computer vision technologies involved in this work are introduced, such as 2D/3D interest point detection, clustering, bag of features, and so on. Experimental results on image classification, video event detection and near-duplicate video retrieval are carried out on a five-node Hadoop cluster to demonstrate the efficiency of the proposed MapReduce framework for large-scale multimedia data mining applications.
基于MapReduce框架的大规模多媒体数据挖掘
本文探讨了MapReduce框架在大规模多媒体数据挖掘中的应用。首先,简要介绍了MapReduce和Hadoop在加速大规模多媒体数据挖掘方面的应用。然后,介绍了本工作涉及的几个关键计算机视觉技术的高级理论和低级实现,如2D/3D兴趣点检测、聚类、特征包等。在五节点Hadoop集群上进行了图像分类、视频事件检测和近重复视频检索的实验结果,以验证所提出的MapReduce框架在大规模多媒体数据挖掘应用中的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信