Topographical matching of multisensor information

V. Molebny, S. Kuzmin
{"title":"Topographical matching of multisensor information","authors":"V. Molebny, S. Kuzmin","doi":"10.1109/COMEAS.1995.472366","DOIUrl":null,"url":null,"abstract":"Discusses the n-dimensional vector representation of the properties of multitemporal or multispectral remotely sensed objects. The known classification procedure permits object identification as i-th class in n-dimensional space. For many cases, increasing n leads to higher informativity and thus to higher probability of correct identification. The number of information channels being given, higher informativity can be reached using multitemporal sensing. This technique is especially productive for vegetation study, because each kind of vegetation has its own temporal gradient of properties evolution, even on comparatively short time intervals. For multichannel sensing both for simultaneous multispectral and multitemporal ones, spatial correspondence is the problem of principle. The authors describe an image classification scheme which consists of two stage pixel to pixel identification. The first stage provides topographical coincidence of the same point under analysis for all channels and the second stage results in characterisation of the pixel under study.<<ETX>>","PeriodicalId":274878,"journal":{"name":"Conference Proceedings Second Topical Symposium on Combined Optical-Microwave Earth and Atmosphere Sensing","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference Proceedings Second Topical Symposium on Combined Optical-Microwave Earth and Atmosphere Sensing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COMEAS.1995.472366","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Discusses the n-dimensional vector representation of the properties of multitemporal or multispectral remotely sensed objects. The known classification procedure permits object identification as i-th class in n-dimensional space. For many cases, increasing n leads to higher informativity and thus to higher probability of correct identification. The number of information channels being given, higher informativity can be reached using multitemporal sensing. This technique is especially productive for vegetation study, because each kind of vegetation has its own temporal gradient of properties evolution, even on comparatively short time intervals. For multichannel sensing both for simultaneous multispectral and multitemporal ones, spatial correspondence is the problem of principle. The authors describe an image classification scheme which consists of two stage pixel to pixel identification. The first stage provides topographical coincidence of the same point under analysis for all channels and the second stage results in characterisation of the pixel under study.<>
多传感器信息的地形匹配
讨论了多时相或多光谱遥感目标属性的n维矢量表示。已知的分类过程允许将对象识别为n维空间中的第i类。在许多情况下,增加n会导致更高的信息性,从而提高正确识别的概率。在给定信息通道数量的情况下,采用多时态感知可以达到更高的信息性。这种技术对植被研究特别有效,因为每种植被都有自己的属性演化的时间梯度,即使在相对较短的时间间隔内也是如此。对于同时进行多光谱和多时间的多通道传感来说,空间对应是一个原理问题。作者描述了一种图像分类方案,该方案由两个阶段的像素到像素的识别组成。第一阶段为所有通道提供被分析的同一点的地形一致性,第二阶段产生被研究像素的特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信