Nonlinear auto-regressive neural network model for forecasting Hi-Def H.265 video traffic over Ethernet Passive Optical Networks

Collin Daly, David L. Moore, Rami J. Haddad
{"title":"Nonlinear auto-regressive neural network model for forecasting Hi-Def H.265 video traffic over Ethernet Passive Optical Networks","authors":"Collin Daly, David L. Moore, Rami J. Haddad","doi":"10.1109/SECON.2017.7925331","DOIUrl":null,"url":null,"abstract":"Video bandwidth forecasting can help optimize the transmission of video traffic over optical access networks. In this paper, we propose the use of a nonlinear auto-regressive (NAR) neural network model for forecasting H.265 video bandwidth requirements to optimize video transmission within Ethernet Passive Optical Networks (EPONs). The video's constituent I, P, and B frames are forecast separately to improve model forecasting accuracy. The proposed forecasting model is able to forecast H.265 encoded High-Definition videos with an accuracy exceeding 90%. In addition, using the video bandwidth requirement predictions as grant requests within EPONs improved the efficiency of dynamic bandwidth allocation (DBA). The use of nonlinear auto-regressive neural network grant sizing predictions within EPONs reduced the video packet queueing delay significantly when the network was saturated near capacity.","PeriodicalId":368197,"journal":{"name":"SoutheastCon 2017","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SoutheastCon 2017","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SECON.2017.7925331","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Video bandwidth forecasting can help optimize the transmission of video traffic over optical access networks. In this paper, we propose the use of a nonlinear auto-regressive (NAR) neural network model for forecasting H.265 video bandwidth requirements to optimize video transmission within Ethernet Passive Optical Networks (EPONs). The video's constituent I, P, and B frames are forecast separately to improve model forecasting accuracy. The proposed forecasting model is able to forecast H.265 encoded High-Definition videos with an accuracy exceeding 90%. In addition, using the video bandwidth requirement predictions as grant requests within EPONs improved the efficiency of dynamic bandwidth allocation (DBA). The use of nonlinear auto-regressive neural network grant sizing predictions within EPONs reduced the video packet queueing delay significantly when the network was saturated near capacity.
基于非线性自回归神经网络的无源光网络高清H.265视频流量预测
视频带宽预测有助于优化光接入网视频流量的传输。在本文中,我们提出使用非线性自回归(NAR)神经网络模型来预测H.265视频带宽需求,以优化以太网无源光网络(epon)中的视频传输。分别预测视频的I、P、B帧,提高模型预测的准确性。该预测模型对H.265编码的高清视频的预测准确率超过90%。此外,在epon中使用视频带宽需求预测作为授权请求,提高了动态带宽分配(DBA)的效率。在epon中使用非线性自回归神经网络拨款大小预测,当网络接近容量饱和时,显著降低了视频分组排队延迟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信