Statistical Spectrum Sensing in Cognitive Radio

A. W. Azim, S. S. Khalid, S. Abrar
{"title":"Statistical Spectrum Sensing in Cognitive Radio","authors":"A. W. Azim, S. S. Khalid, S. Abrar","doi":"10.1109/FIT.2012.34","DOIUrl":null,"url":null,"abstract":"Statistical spectrum sensing is a promising method which can reliably detect the primary users while requiring little prior information in cognitive radio networks. In this paper, we present an overview of sensing methods based on Goodness-of-Fit tests. We discuss the performance of Energy Detector (ED) sensing, Anderson Darling (AD) sensing, Cram'er VonMises(CVM) sensing and Order Statistic (OS) sensing and we compare the results using Monte-Carlo simulations. It is shown that OS sensing outperforms ED sensing, CVM sensing and AD sensing. Next it is shown through simulations that the OS test statistic does not provide maximum probability of detection for a desired probability of false alarm and results are provided showing the regions of high probability of detection for desired probability of false alarm.","PeriodicalId":166149,"journal":{"name":"2012 10th International Conference on Frontiers of Information Technology","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 10th International Conference on Frontiers of Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FIT.2012.34","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Statistical spectrum sensing is a promising method which can reliably detect the primary users while requiring little prior information in cognitive radio networks. In this paper, we present an overview of sensing methods based on Goodness-of-Fit tests. We discuss the performance of Energy Detector (ED) sensing, Anderson Darling (AD) sensing, Cram'er VonMises(CVM) sensing and Order Statistic (OS) sensing and we compare the results using Monte-Carlo simulations. It is shown that OS sensing outperforms ED sensing, CVM sensing and AD sensing. Next it is shown through simulations that the OS test statistic does not provide maximum probability of detection for a desired probability of false alarm and results are provided showing the regions of high probability of detection for desired probability of false alarm.
认知无线电中的统计频谱感知
在认知无线电网络中,统计频谱感知能够在不需要先验信息的情况下可靠地检测到主用户,是一种很有前途的方法。本文综述了基于拟合优度检验的传感方法。我们讨论了能量探测器(ED)传感、安德森达林(AD)传感、克拉姆·冯米塞斯(CVM)传感和顺序统计(OS)传感的性能,并通过蒙特卡罗模拟比较了结果。结果表明,OS感知优于ED感知、CVM感知和AD感知。接下来,通过模拟表明,OS测试统计量并没有为期望的虚警概率提供最大检测概率,并且提供了显示期望的虚警概率的高检测概率区域的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信