Orientational Spatial Part Modeling for Fine-Grained Visual Categorization

Hantao Yao, Shiliang Zhang, Fei Xie, Yongdong Zhang, Dongming Zhang, Yu Su, Q. Tian
{"title":"Orientational Spatial Part Modeling for Fine-Grained Visual Categorization","authors":"Hantao Yao, Shiliang Zhang, Fei Xie, Yongdong Zhang, Dongming Zhang, Yu Su, Q. Tian","doi":"10.1109/MobServ.2015.56","DOIUrl":null,"url":null,"abstract":"Although significant success has been achieved in fine-grained visual categorization, most of existing methods require bounding boxes or part annotations for training and test, resulting in limited usability and flexibility. To conquer these limitations, we aim to automatically detect the bounding box and parts for fine-grained object classification. The bounding boxes are acquired by a transferring strategy which infers the locations of objects from a set of annotated training images. Based on the generated bounding box, we propose a multiple-layer Orientational Spatial Part (OSP) model to generate a refined description for the object. Finally, we employ the output of deep Convolutional Neural Network (dCNN) as the feature and train a linear SVM as object classifier. Extensive experiments on public benchmark datasets manifest the impressive performance of our method, i.e., Classification accuracy achieves 63.9% on CUB-200-2011 and 75.6% on Aircraft, which are actually higher than many existing methods using manual annotations.","PeriodicalId":166267,"journal":{"name":"2015 IEEE International Conference on Mobile Services","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Mobile Services","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MobServ.2015.56","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Although significant success has been achieved in fine-grained visual categorization, most of existing methods require bounding boxes or part annotations for training and test, resulting in limited usability and flexibility. To conquer these limitations, we aim to automatically detect the bounding box and parts for fine-grained object classification. The bounding boxes are acquired by a transferring strategy which infers the locations of objects from a set of annotated training images. Based on the generated bounding box, we propose a multiple-layer Orientational Spatial Part (OSP) model to generate a refined description for the object. Finally, we employ the output of deep Convolutional Neural Network (dCNN) as the feature and train a linear SVM as object classifier. Extensive experiments on public benchmark datasets manifest the impressive performance of our method, i.e., Classification accuracy achieves 63.9% on CUB-200-2011 and 75.6% on Aircraft, which are actually higher than many existing methods using manual annotations.
面向细粒度视觉分类的空间部件定向建模
虽然在细粒度视觉分类方面已经取得了很大的成功,但是现有的大多数方法都需要边界框或部分注释来进行训练和测试,导致可用性和灵活性有限。为了克服这些限制,我们的目标是自动检测边界框和部件以进行细粒度对象分类。边界框通过一种迁移策略获取,该策略从一组带注释的训练图像中推断物体的位置。在生成边界框的基础上,提出了一种多层定向空间部分(OSP)模型来生成对象的精细描述。最后,我们利用深度卷积神经网络(dCNN)的输出作为特征,训练线性支持向量机作为目标分类器。在公共基准数据集上的大量实验表明,我们的方法具有令人印象深刻的性能,即在CUB-200-2011上的分类准确率达到63.9%,在Aircraft上达到75.6%,实际上高于许多使用手动注释的现有方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信