RoPAD: Robust Presentation Attack Detection through Unsupervised Adversarial Invariance

Ayush Jaiswal, Shuai Xia, I. Masi, Wael AbdAlmageed
{"title":"RoPAD: Robust Presentation Attack Detection through Unsupervised Adversarial Invariance","authors":"Ayush Jaiswal, Shuai Xia, I. Masi, Wael AbdAlmageed","doi":"10.1109/ICB45273.2019.8987276","DOIUrl":null,"url":null,"abstract":"For enterprise, personal and societal applications, there is now an increasing demand for automated authentication of identity from images using computer vision. However, current authentication technologies are still vulnerable to presentation attacks. We present RoPAD, an end-to-end deep learning model for presentation attack detection that employs unsupervised adversarial invariance to ignore visual distractors in images for increased robustness and reduced overfitting. Experiments show that the proposed framework exhibits state-of-the-art performance on presentation attack detection on several benchmark datasets.","PeriodicalId":430846,"journal":{"name":"2019 International Conference on Biometrics (ICB)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Biometrics (ICB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICB45273.2019.8987276","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

For enterprise, personal and societal applications, there is now an increasing demand for automated authentication of identity from images using computer vision. However, current authentication technologies are still vulnerable to presentation attacks. We present RoPAD, an end-to-end deep learning model for presentation attack detection that employs unsupervised adversarial invariance to ignore visual distractors in images for increased robustness and reduced overfitting. Experiments show that the proposed framework exhibits state-of-the-art performance on presentation attack detection on several benchmark datasets.
基于无监督对抗不变性的鲁棒表示攻击检测
对于企业、个人和社会应用,现在越来越需要使用计算机视觉从图像中自动验证身份。然而,当前的身份验证技术仍然容易受到表示攻击。我们提出了RoPAD,这是一种端到端深度学习模型,用于表示攻击检测,它采用无监督对抗不变性来忽略图像中的视觉干扰,以提高鲁棒性并减少过拟合。实验表明,该框架在多个基准数据集上表现出最先进的表示攻击检测性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信